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Overview (1)

n Introduction
n Neural learning as optimization task
n Orthonormality constraints
n Rationale for Stiefel-manifold learning

n ‘Rigid-body’ learning theory
n Rigid-body learning equations
n Related studies and allied topics
n Main properties (equilibria, stability)
n Illustrative examples
n Notes on implementation
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Overview (2)

n Reduced Rigid-Body Learning 
n Representation theorem
n Reworking the equations

n Learning by Geometric Integration
n What is geometric integration ?
n An illustrative example
n Proposed integration scheme

n Conclusions
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Neural Learning as Optimization

n Learning arising from optimization:
n Description of network’s task:

n 1) synthesis of learning criterion;
n 2) individuation of the constraints.

n Selection/design of a proper optimization method:
n 1) formulation of differential equations describing network dynamics;
n 2) description of the invariants accounting for the constrains.

n Implementation of the learning theory:
n 1) (numerical) integration of the differential equations;
n 2) preservation of the constraints described by the invariants.

n Example: Principal subspace analysis (PSA). Criterion: Rayleigh 
quotient. Constraints: Orthonormality. Differential equation: Oja’s 
flow. Invariant: Stiefel (Grassman) manifold. Integration: Euler 
method. Preservation of invariant: ?.
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Orthonormality constraints

n Let us consider a one-layer network:

n Constraints of orthonormality: .

n The invariant is the Stiefel manifold:               .

n Note: .  When inequality holds the manifold is connected. 
When equality holds the manifold is isomorphic to the orthogonal
group which has two components; in this case, we work with the 
orthogonal matrices having determinant +1, i.e. the special 
orthogonal group (SO). 
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Rationale for Stiefel Learning - 1

n Many well-known applications:
n Principal/minor component analysis. Subspace iteration.

n Independent (over- and under-determined) component analysis.

n Several potential applications:
n Solid-state physics computations (Edelman, Arias and Smith, 1998)

n Dynamic texture recognit ion via ARMA modeling of image streams 
(Saisan, Doretto, Wu and Soatto, 2001)

n Transformation-invariant optical character recognit ion (Sona, 
Sperduti and Starita, 2000)

n Optical flow estimation by SVD computation and tracking (Fiori, 2003)
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Rationale for Stiefel Learning - 2

n References for the potential applications:
n A. Edelman, T. Arias and S.T. Smith, The geometry of algorithms 

with orthogonality constraints, SIAM Journal on Matrix Analysis and 
Applications, Vol. 20, No. 2, pp. 303 – 353, 1998

n P. Saisan, G. Doretto, Y.N. Wu and S. Soatto, Dynamic texture 
recognition, Proc. of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognit ion, Vol. 2, pp. 58 - 63, Dec. 
2001

n D. Sona, A. Sperduti, and A. Starita, Discriminant Pattern Recognit ion 
Using Transformation Invariant Neurons,  Neural Computation, Vol. 
12, No. 6, pp. 1355 - 1370, June 2000

n S. Fiori, Singular Value Decomposition Learning on Double
Stiefel Manifold, International Journal of Neural Systems. 
Accepted for publication, 2003
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Rationale for Stiefel Learning - 3

n Intrinsic “stability” of the learning method (thanks to the 
compactness of the parameter space).
n Compactness ensures the non-divergence of the differential 

equations.

n Some appl ications and thoughts on stability are summarized in:

n S. Fiori, “A Theory for Learning by Weight Flow on Stiefel-Grassman
manifold”,  Neural Comp., Vol. 13, No. 7, pp. 1625 – 1647, 2001

n S. Fiori, “Unsupervised Neural Learning on Lie Group”, Int. J. of Neural 
Systems, Vol. 12, No. 3-4, pp. 219 – 246, 2002
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‘Rigid-Body’ Learning Theory

Natural phenomena may be formalized via optimization.

Rigid-body dynamics theory provides a natural way to formalize 
general Stiefel manifold learning.
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Some Exemplary Contributions and     
Allied Topics - 1

n Some contributions on natural, second-order, non-gradient 
methods for neural learning as well as optim ization:

n C. Aluffi-Pentini, V. Parisi, and F. Zirilli, Global Optimization and 
Stochastic Differential Equations, J. of Optimizat ion Theory and 
Applications, Vol. 47, pp. 1 - 16, 1985

n S.-i. A m ari, H. Park and K. Fukumizu ,  Adaptive method of 
realizing natural gradient learning for multilayer perceptrons, Neural 
Computation,  12, 1399-1409, 2000

n R.W. Brockett,  Dynamical systems that sort lists, diagonalize
matrices and solve l inear programming problems, Linear Algebra and 
Its Applications, Vol. 146, pp. 79 - 91, 1991

n S. Hochreiter and M.C. Mozer, Coulomb classif iers: Reinterpreting 
SVMs as electrostatic systems, Technical report CU-CS-921-01, Dept. 
of Computer Science. University of Colorado, May 2001
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Some Exemplary Contributions and     
Allied Topics - 2

n Some contributions on natural, second-order, non-gradient 
methods for neural learning as well as optim ization:

n Y. Nishimori , Learning Algorithm for ICA by Geodesic Flows on 
Orthogonal Group, Proc. of the International Joint Conference on 
Neural Networks (IJCNN'99), Vol. 2, pp. 1625 - 1647, 1999

n N. Qian,  On the Momentum Term in Gradient Descent Learning 
Algorithms, Neural Networks, Vol. 12, pp. 145 - 151, 1999

n K. Zhang and T.J. Sejnowski , A theory of geometric constraints 
on neural activity for natural three-dimensional movement, Journal 
of Neuroscience, Vol. 19, No. 8, pp. 3122 -- 3145, 1999
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Rigid-body Learning Equations - 1

n Learning equations arising from the study of the dynam ics 
of an abstract rigid body:

n Detai led derivation in: S. Fiori, “A Theory for Learning based on Rigid-bodies 
Dynamics”,  IEEE Trans. on Neural Networks, Vol. 13, No. 3, pp. 521 – 531, May 
2002
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Rigid-Body Learning Equations - 2

n Main properties:
n The connection matrix W(t) belongs to the Stiefel 

manifold/orthogonal group at any t ime. The angular-speed matrix 
B(t) belongs to the Lie algebra of the orthogonal group at any t ime.

n The fixed points of the learning equations satisfy:

n The system tends to minimize the potential energy function U (t).

n The system is second-order in time (this al lows better control of the 
dynamics for e.g. local extremes avoidance).

n The equil ibria are asymptotically stable.

0WFFW0BW =−= TT , 
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Rigid-Body Learning Equations - 3

n Proof of stability through Lyapunov function.
n Let us define the linear velocity and network ’s kinetic energy: 

n The energy balance equation writes:

n If      denotes the minimum of U over the manifold (it exists because of 
regularity and compactenss), the Hamiltonian                                    is –
by construction – posit ive and enjoys the property:

n Thus its time-derivative is . The equality hold at 
equilibrium.
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Illustrative examples - 1

n Case of one-unit 
first (top)/last 
(bottom) principal 
component analysis.  

n The total energy 
(solid-l ine) H(t) 
converges to zero 
(the system looses 
energy because of 
friction).

n The potential 
energy function is 
minimized.

][)( 2yEU ±=w
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Illustrative examples - 2

n Case of one-unit kurtosis-based independent component analysis.  

Original sources (top) and mixed images (bottom).
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Illustrative examples - 3

n Neuron’s 
kinetic 
energy 

and

signal-to-
interference 
residual 

during 
learning.

][)( 4yEU ±=w
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Illustrative examples - 4

n Neuron’s output after learning (the most kurtotic and 
the least kurtotic sources only).
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Implementation Notes: Important!

n The implementation of the rigid-body learning equations should meet 
some requirements:

n 1) easy representation of the involved matrix-quantities, 

n 2) spare use of arrays and computations,

n 3) accurate integration of the differential equations.

n Previous solutions:

n 1) requirement inherently met,

n 2) arrays used as they are: requirement not met,

n 3) Euler method for matrix B(t): allowed because it belongs to a l inear space. 
Exponential map for matrix W (t) updating: 

computationally expensive if used as is (2 not met), inaccurate if 
approximated by the Taylor series: requirement only partially met.

)())(exp())1(( ηηη nnn WBW =+
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Stressing out the Importance of 
Integration

n Implementing a differential learning equation means 
discretizing it in time.

n The discretization process in not consequence-free:
n The properties of the continuous-time equations (such as intrinsic 

stabil ity) general ly do not preserve.

n The invariants generally break.

n Main point: The integration process – which actually is what 
we call “algorithm” – should be definitely paid attention to !!

n Some numerical examples in: S. Fiori, “A Minor Subspace Algorithm 
Based on Neural Stiefel Dynamics”, Int. J. of Neural Systems, Vol. 12, 
No. 5, pp. 339 – 350, 2002
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First: Reworking the equations

n Problem ¬ : The state-matrix B(t) is always of  maximum 
dimension         even when           .

n Solution: Reformulate the equations as:

n In other terms, instead of using the Lie-algebra 
parameterization, the tangent-space parameterization is 
chosen for the equations.

n Advantage: The new parameterization is computationally 
cheaper (V has dimension        ).
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Main result on Reworking the Equations

n Any element V tangent to the Stiefel manifold at W can be written in the 
form (Cel ledoni and Owren, 2001):

n By using the previous ansatz:

n where               and .

n Note: The parentheses in the above equations suggest a 
computationally-effective way to calculate the matrix-products.

n Reference: E. Cel ledoni and B. Owren, On the implementation of Lie-group 
methods on the Stiefel manifold, Preprint Numerics no. 9/2001, Norwegian 
University of Science and Technology, Trondheim (Norway), 2001
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Second: Integrate the Equations

n Problem ­ : The differential equations should be integrated 
properly.

n Solution under investigation: Use Geometric Integration (GI) 
methods.

n In the present case, the differential equation for V may be 
solved by the standard Euler method, because it belongs to 
the tangent space to the Stiefel manifold at W , which is a 
l inear space.

n We integrate the differential equation for W using the Lie-
Euler method which advances the numerical solution by 
using the left transitive action of SO(p) on the Stiefel
manifold. The action is lifted to the Lie algebra so(p) using 
the exponential map.
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BTW: What is Geometr ic Integrat ion ? (1)

n Geometric integration is a new approach to simulating the 
motion of large systems. 

n The new methods are faster, more reliable, and often 
simpler than tradit ional approaches. 

n They are being used in the structure of liquids, polymers 
and bio-molecules, quantum mechanics and nano-devices, 
biological models, chemical reaction-diffusion systems, the 
dynamics of f lexible structures, and several more.
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What is Geometric Integration ? (2)

n Although diverse, the above systems preserve some 
underlying geometric structure which influences the 
qualitative nature of the phenomena they produce. In 
geometric integration these properties are built into the 
numerical method, which gives the method markedly 
superior performance, especially during long simulations.

n Main references: 
n E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical 

Integration, Springer series in Computational Mathematics, Springer, 
2002

n P.J. Olver, Applications of Lie Groups to Differential Equations, 
Springer series in Graduate Text in Mathematics, Springer, 1993 
(Second Edition)

n Geometric integration interest group web page: 
http://www.focm.net/gi/
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An Illustrative Example

n Full many-particle simulation of Near Earth Asteroids

n Source: Sverker Edvardsson (http:// w ww.fmi. mh.se/ ~sverkere/)
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New Learning Algorithm

n The new learning algorithm (under construction) writes:

n The exponent iation is much expensive in terms of computation cost. 
Some alternate methods as well as numerical tr icks appeared in:
n E. Celledoni and A. Iserles, Approximating the exponential form of a Lie 

algebra to a Lie group, Math. Comp. 69, pp. 1457 - 1480, 2000

n E. Celledoni and S. Fiori,  Neural learning by geometric integration of reduced 
‘rigid-body’ equations. Preprint Numerics no. 4/2002, Norwegian University 
of Science and Technology, Trondheim (Norway), 2002

n I. Yamada and T. Ezaki, An orthogonal matrix optimization by dual Cayley 
parameterizat ion technique. To appear on ICA*2003 Proceedings.
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Conclusions - 1

n Neural learning with orthonormality constraints has been 
surveyed.

n The formulation of the learning differential equations and of 
the invariants is of prime importance.

n The correct choice of the most proper integration algorithm 
looks truly an important part of learning algorithm design.
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Conclusions - 2

n It seems worth to consider a unifying view among different 
research streams aiming at preserving invariants, name ly:

n 1) Geodesic learning (Edelman, Arias and Smith, 1998; Nishimori 
1999).

n 2) Projection methods (Manton, 2001)

n 3) Lagrange mult ipl ier methods for gradient adaptation (for a 
discussion see Douglas, Amari and Kung, 1999)

n 4) Fixed-point iteration method (? – It stems from 3)
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Further reading…

n A. Cichocki and P. Georgev, Blind separation algorithms with matrix 
constraints,  IEICE Trans. on Fundamentals. To appear

n S.C. Douglas, S.-I. Amari and S.-Y. Kung, Gradient adaptation with 
unit-norm constraints, Technical report of the Department of 
Electr ical Engineering, School of Engineering and Applied Science, 
Southern Methodist University, Dal las (TX, USA). February 1999

n A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett and A. Zanna: Lie-group 
methods, Acta Numerica, Vol. 9, pp. 215 - 365, 2000

n J.H. Manton, Optimisation algorithms exploit ing unitary constraints , 
IEEE Transactions on Signal Processing. To appear

n T. Rapcsák, On minimization on Stiefel manifold,  European Journal 
of Operational Research. To appear
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