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Abstract. Nonlinear oscillators are ubiquitous in sciences, being able to model the behavior of complex nonlinear
phenomena, as well as in engineering, being able to generate repeating (i.e., periodic) or non-repeating (i.e., chaotic)
reference signals. The state of the classical oscillators known from the literature evolves in the space Rn, typically with
n = 1 (e.g., the famous van der Pol vacuum-tube model), n = 2 (e.g., the FitzHugh-Nagumo model of spiking neurons) or
n = 3 (e.g., the Lorenz simplified model of turbulence). The aim of the current paper is to present a general scheme for
the numerical differential-geometry-based integration of a general second-order, nonlinear oscillator model on Riemannian
manifolds and to present several instances of such model on manifolds of interest in sciences and engineering, such as the
Stiefel manifold and the space of symmetric, positive-definite matrices.
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1. Introduction. Nonlinear oscillators (both autonomous and driven) have been widely studied in
the scientific literature either because they arise naturally in the process of modeling complex physical
structures and because they constitute the basis for several modern applications. Paradigmatic examples
of nonlinear oscillators obtained from models of complex physical systems are the van der Pol oscillator,
that arose from a model of vacuum tubes [29], and the Lorenz oscillator [22], that was derived from the
simplified model of convection rolls in the atmosphere and has important implications in climate and
weather predictions. The literature is rich in Lorenz-like systems, such as the Chen system and the Lü
system [21]. Paradigmatic applications of designed oscillators (either self-sustained or controlled) is to
the secure transmission of information [40], to the active damping of mechanical vibrations [9], and to
the analysis of bivariate data by a coupled-oscillators approach [34]. A detailed list of applications of
non-linear, chaotic, oscillators in science and engineering may be found, e.g., in the review paper [6].
We would like to cite two, in particular, that appear as especially relevant, as they relate chaos analysis
with a powerful signal-processing technique known as Independent Component Analysis (ICA), namely,
wearable mental-health monitoring [33], and seismic signal detection and characterization [1].

The state of nonlinear oscillators evolves over time in complex, non-repeating, deterministic patterns.
Most nonlinear oscillators appear as first-order or second-order dynamical systems involving a single real
variable. The simplest model is perhaps the linear harmonic oscillator. As no damping is present, the
harmonic oscillator preserves its initial energy indefinitely. An example of ‘damped’ oscillator is the van
der Pol oscillator model, which is closely-related to biologically-inspired nonlinear dynamical systems
such as the FitzHugh-Nagumo model [16], the Hodgkin-Huxley model of the activation and deactivation
dynamics of spiking neurons and the Hindmarsh-Rose model [37], that augments with a slow variable
the planar FitzHugh-Nagumo model. Another well-studied nonlinear system that exhibits a complex
behavior is the Duffing oscillator that models, for example, a spring pendulum whose spring’s stiffness
does not exactly obey Hooke’s law [36].

Examples of dynamical systems involving more than one variable are known in the scientific literature.
A nonlinear, three-dimensional, deterministic dynamical system is the Rabinovich-Fabrikant oscillator
[30]. It is described by a set of three coupled ordinary differential equations comprising two parameters,
which may exhibit a complex behavior for certain values of the parameters, while for other values of
the parameters its flow may tend to a stable periodic orbit. Likewise, the Rössler oscillator [35] helps
describing equilibrium in chemical reactions. In addition, a three-dimensional nonlinear oscillator is the
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Colpitts circuit, built up of a bipolar junction transistor and a resonant network consisting of an inductor
and two capacitors [24].

The state of the above nonlinear oscillators recalled from the scientific literature evolves in the real
line R or in the real plane R2 or in the ordinary space R3. As an example, the Figure 1.1 illustrates
the state of an Hindmarsh-Rose model in terms of the three variables (V, n, h) ∈ R3. The present paper

1.7
1.8

1.9
2

2.1
2.2

−2

−1

0

1

2
−14

−12

−10

−8

−6

−4

−2

0

2

Variable h

Hindmarsh-Rose model

Variable V

V
a
ri
a
b
le

n

Fig. 1.1. Exemplary behavior of an Hindmarsh-Rose model in terms of the three variables (V, n, h) ∈ R3. The thick
circle denotes the initial point, while the thick diamond denotes the final point of the trajectory.

aims at extending previous studies on nonlinear autonomous oscillators from flat Euclidean spaces to
high-dimensional curved Riemannian manifolds. Riemannian manifolds of interest in the literature are
the Stiefel manifold (along with the special cases of the unit-hypersphere and the orthogonal group),
the space of symmetric, positive-definite matrices and the special orthogonal group. In particular, the
current contribution aims at presenting discrete-time nonlinear autonomous oscillators equations that
may be implemented on a computing platform and at investigating to what extent the obtained discrete-
time dynamical system replicates its theoretical continuous-time differential-geometric properties.

The theory and practice of non-linear oscillators is one of the topics of prime interest in the nonlinear
science community, as testified by a number of papers about non-linear oscillators in mobile robotics [5],
thermodynamics [27], signal transmission and processing [39, 43], mathematical optimization [46] and
artificial intelligence [44]. The motivation and fundamental aim of the present contribution is to open
new perspectives in the theory of nonlinear damped oscillators on curved spaces and to promote research
efforts in this field.

The current paper is organized as follows. The Section 2 recalls the notation used in differential
geometry (in Subsection 2.1) and describes a general second-order dynamical system derived by the
analysis of a point-wise particle sliding on a smooth manifold following the landscape of a potential energy
function and under the effect of passive/active damping (in Subsection 2.2); the Subsection 2.3 illustrates
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the notation and the general structure of the second-order oscillator via a 1-dimensional example. The
Subsection 3.1 describes discrete-time second-order autonomous oscillators on the unit-hypersphere, the
Subsection 3.2 describes oscillators on a Lie group, namely, the manifold of special orthogonal matrices,
the Subsection 3.3 deals with the manifold of symmetric, positive-definite matrices, and the Subsection 3.4
illustrates discrete-time second-order autonomous oscillators on the compact Stiefel manifold, for which
several quantities of interest are not available in closed form; the Subsection 3.5 discusses the problem
of the (lack of) conservation of energy in theoretically-conservative systems due to finite-length stepping
in discrete-time systems. The Section 4 illustrates the developed theory by means of two examples of
oscillators on the sphere S2 that allows graphical rendering. The Section 5 concludes the paper and
outlines some foreseen applications and theoretical research.

2. Nonlinear autonomous oscillators on Riemannian manifolds. The present section summa-
rizes the notation of differential geometry used throughout this paper, and describes the general structure
of nonlinear, second-order, dynamical systems on Riemannian manifolds arising from the modeling of a
point-wise particle sliding on a smooth manifold.

2.1. Notation of differential geometry. For the theory of differentiable manifolds, readers may
consult the series of books [38].

Let M denote a real differentiable manifold of dimension r. In local coordinates, a point x ∈ M is
denoted by (x1, x2, . . . , xr). At a point x ∈M , the tangent space to the manifold M is denoted as TxM
and represents the vector space of dimension r spanned by all tangent vectors to all smooth curves on M
passing through the point x. The canonical basis of a tangent space TxM is denoted by (∂1, ∂2, . . . , ∂r)

where ∂σ = ∂σ(x). The symbol TM denotes the tangent bundle defined as TM
def
= {(x, v)|x ∈ M,v ∈

TxM}. The cotangent space to the manifold M at a point x ∈M is denoted as T ?xM and represents the
set of linear functions from TxM to R. Elements of a cotangent space are termed cotangent vectors. The
canonical basis of the cotangent space T ?xM is denoted by (dx1,dx2, . . . ,dxr). In the present paper, the
Einstein summation convention is in force: in an expression where repeated indexes occur, summation
over those indexes is implied.

A Riemannian manifold M is endowed with a bilinear, symmetric, positive-definite form Gx : TxM ×
TxM → R. In local coordinates, the bilinear form G is expressed by the components of the metric tensor

Gστ (x)
def
=Gx(∂σ, ∂τ ). Therefore, expressing two tangent vectors as w = wσ∂σ and v = vσ∂σ, bilinearity

implies Gx(w, v) = Gστ (x)wσvτ . The components of the inverse metric tensor are denoted by Gστ . A

local metric Gx also defines a local norm ‖v‖x
def
=
√

Gx(v, v), for v ∈ TxM .
The metric ‘sharp’ operator is denoted by G]. In local coordinates, the sharp operator G]x : T ?xM →

TxM acts as G]x(uσdxσ) = Gστuσ∂τ . Let ψ : M → R denote a differentiable function. The differential
of a function ψ : M → R at a point x ∈M is denoted by dxψ ∈ T ?xM . Given a tangent vector v ∈ TxM ,
the scalar dxψ(v) represents the directional derivative of the function ψ along the direction v, namely
dxψ(v) = ∂ψ

∂xσ v
σ = Gx((G]x ◦dx)ψ, v). Therefore, the Riemannian gradient of the function ψ with respect

to a metric G, evaluated at the point x ∈M , is (G]x ◦ dx)ψ.
The Christoffel symbols of the second kind of the Levi-Civita connection associated with the metric

tensor of components Gστ are denoted by
G
Γστ
α , while the associated Christoffel form

G
Γx is defined (in local

coordinates) by [
G
Γx(v, w)]α

def
= Γαστv

σwτ . A Levi-Civita connection
G
∇ defines a parallel transport operator

G
P that allows one to move a tangent vector along a curve on a manifold.

The notion of geodesic curve generalizes the notion of straight line of Euclidean spaces. A distin-
guishing feature of a straight line of an Euclidean space is that it translates parallel to itself, namely, it
is self-parallel. The notion of ‘straight line’ on a curved space inherits such a distinguishing feature. A

geodesic on a manifold M with connection
G
∇ and associated parallel transport operator

G
P, is a curve γ

such that γ̇ is parallel translated along γ itself. A geodesic curve γ : I→M , with 0 ∈ I, that satisfies the
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initial conditions γ(0) = x ∈ M and γ̇(0) = v ∈ TxM is denoted as γx,v(t). Given two points x, y ∈ M ,
suppose that there exists a geodesic γ : [0, 1] → M that joins them, namely, such that γ(0) = x and

γ(1) = y. In this case, the special parallel transport operator
G
Pγ : TxM → TyM may be denoted as

Px→y : TxM → TyM , with the convention that the operator Px→x coincides with the identity map in
TxM .

The parallel transport operator preserves the inner products, namely, given two geodesically-connectable
points x, y ∈ M and two tangent vectors v, w ∈ TxM , it holds that Gy(Px→y(v),Px→y(w)) = Gx(v, w).
In particular, taking v = w shows that parallel transport preserves the norm of a tangent vector, namely,
it represents an isometry.

Given a geodesic line γx,v(t), a manifold exponential exp : TM →M is defined as expx(v)
def
= γx,v(1).

It maps a tangent vector v ∈ TxM to a point y = expx(v) that belongs to a neighborhood of the point
x ∈M . Its inverse ‘log’ is defined only locally and is termed manifold logarithm. Given points x, y ∈M ,
it returns a tangent vector v = logx(y) ∈ TxM such that expx(v) = y.

Given two points x, y ∈M connectable by a minimizing geodesic line γ : [0, 1]→M , the Riemannian
distance between those points is defined by:

d(x, y)
def
=

∫ 1

0

√
Gγ(t)(γ̇(t), γ̇(t))dt = ‖ logx(y)‖x. (2.1)

A fundamental result of the calculus on manifolds states that the Riemannian gradient of a squared
distance function reads:

G]x(dxd
2(x, y)) = −2 logx(y). (2.2)

2.2. Second-order dynamical systems on Riemannian manifolds. A classical dynamical sys-
tem on the space R3 is the Newton’s law of motion of a particle of mass m subjected to an external force
f : R3 × R3 → R3. The trajectory x : I → R3, along the time-interval I, followed by such a particle, is
computed as the solution of the Newton’s equation:

ẍ = m−1f(x, ẋ). (2.3)

The phase-space of the dynamical system (2.3), namely, the high-dimensional space of the kinematic
states of the particle, is given by R3 × R3. The term ẍ(t) denotes the instantaneous acceleration of the
particle at the time t, the mass term m accounts for the inertia of the particle and the external force f
depends on the instantaneous position x(t) and on the instantaneous velocity ẋ(t).

By embedding the manifold M into an Euclidean space of sufficient size, the dynamics of a point-wise
particle sliding on a Riemannian manifold M with metric G may be expressed, in embedded coordinates,
as: {

ẋ = v,

v̇ +
G
Γx(v, v) = −(G]x ◦ dx)Vx + G]x(fx),

(2.4)

in the tangent-bundle variables (x(t), v(t)) ∈ TM . Such fundamental equations were derived in [15]. The
tangent bundle plays the role of phase-space for the dynamical system (2.4). The role of ‘mass’ is played
by the inverse inertia tensor G]x, while the manifold-valued variable x plays the role of instantaneous
position on the manifold M , the tangent-bundle variable v plays the role of instantaneous velocity of the

particle, and the term v̇ +
G
Γx(v, v) is termed instantaneous geometric acceleration.

In the context of autonomous dynamical systems subjected to external driving forces on manifolds,
a force at a point x ∈M is a cotangent vector, namely fx : TxM → T ?xM . The force fx = fx(v) ∈ T ?xM
will essentially represent damping effects (either dissipative and active), specifically:
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• Friction-type damping : This kind of damping generalizes the Rayleigh damping [25] and is ex-

pressed by the forcing term fx = − 1
2µ

∂(Gx(v,v)ε)
∂vσ dxσ, with ε ≥ 1 being a damping coefficient and

µ ≥ 0 being a viscosity coefficient. The generalized Rayleigh damping force gives rise to the term

G]x(fx) = −µ‖v‖2(ε−1)
x v.

• Active damping : It generalizes the nonlinear damping term that appears, for example, in the
van der Pol system and in the Lorenz system, and gives rise to the expression G]x(fx) = −ϕx(v),
with ϕ : TM → TM .

The kinetic energy function for a point-wise particle associated with the metric G is denoted by

K : TM → R and is defined by Kx(v)
def
= 1

2Gx(v, v) for (x, v) ∈ TM . The potential energy function (p.e.f.)
V : M → R depends on the coordinate x ∈ M only. In the absence of any external solicitation, the
dynamical system generates a trajectory γ : I → M that follows the landscape of the potential energy
function.

An example of p.e.f. is the potential energy function of the Simple Pendulum, defined as

V (SP)
x

def
=κ(1− cos d(x, r)), (2.5)

with κ > 0 being a constant parameter and r ∈M denoting a reference point, whose Riemannian gradient
reads

G]x(dxV
(SP)
x ) = −κ logx(r) sinc d(x, r), (2.6)

where the symbol ‘sinc ’ denotes the cardinal sine function defined as

sinc (z) =

{
z−1 sin z for z 6= 0,

1 for z = 0.

Further examples of p.e.f.’s are the Quadratic potential energy function

V (II)
x

def
= 1

2κd
2(x, r), (2.7)

with κ > 0 being a constant parameter and r ∈M denoting a reference point, and the Quartic potential
energy function:

V (IV)
x = ± 1

2d
2(x, r)± 1

4κd
4(x, r), (2.8)

where κ > 0 and r ∈M denotes a reference point, where the signs ± were introduced to account for the
soft and the double-well Duffing oscillator, together with the hard Duffing oscillator analyzed in [26]; the

Riemannian gradient of the p.e.f. V
(IV)
x reads

G]x(dxV
(IV)
x ) = ∓[1± κd2(x, r)] logx(r). (2.9)

The total energy (or Hamiltonian function) H : TM → R of the particle sliding on the manifold is
defined by:

Hx
def
=Kx + Vx. (2.10)

Over a trajectory x : I → M of the system (2.4), the total energy of the system varies according to the
following power law:

dHx

dt
= Gx(G]x(fx), v). (2.11)

If the external forcing is absent, the system (2.4) is conservative as the total energy Hx keeps constant over
time; otherwise, the system is non-conservative and its energy varies over time according to the structure
of the forcing term fx. Rayleigh damping gives rise to the power term −µ‖v‖2εx , that is certainly negative
or zero, hence it represents an energy loss. The active damping may take energy out from the system as
well as bring energy into the system, depending on the structure of the function ϕ. Active damping is,
indeed, responsible of self-sustained oscillations.

5



2.3. Example: Second-order dynamical systems on 1-dimensional Riemannian mani-
folds. To exemplify the above theoretical development, the present subsection discusses the special case
of Riemannian manifolds M of dimension 1. The main interest on such kind of manifolds is analytic
tractability and the possibility to connect the study of their behavior with known results from the sci-
entific literature on the theory of classical nonlinear damped oscillators. Examples of 1-dimensional
manifolds are the unit sphere S1 and the special orthogonal group SO(2).

In order to particularize the general equations (2.4) to the case of a 1-dimensional Riemannian
manifold, the following preliminary observations are in order. On a Riemannian manifold M of dimension
1, the tangent space TxM is a linear space of dimension 1 whose basis vector is denoted by ∂x, and
the metric tensor Gx collapses into a scalar function gx > 0, x ∈ M . Given two tangent vectors
v∂x, w∂x ∈ TxM , their inner product Gx(v∂x, w∂x) = gxvw. Consequently, the squared norm ‖v∂x‖2x
equals gxv

2. Likewise, the cotangent space T ?xM has dimension 1 and its basis vector is denoted by dx.
Given a cotangent vector udx, it holds that G]x(udx) = u

gx
∂x. The Christoffel symbols of the second

kind of the Levi-Civita connection associated with the metric tensor G are computed, in general, by the
formula:

G
Γστ
α def

= 1
2G

αβ

(
∂Gβτ
∂xσ

+
∂Gσβ
∂xτ

− ∂Gστ
∂xβ

)
. (2.12)

Hence, in the present example, the only Christoffel symbol
G
Γ11

1 reads
G
γx

def
= 1

2
1
gx

dgx
dx = 1

2
d log gx

dx and the

only non-zero value of the Christoffel form
G
Γx(v∂x, w∂x) is

G
γxvw. Given a potential energy function

V : M → R, the only non-zero component of its gradient G]x(dxVx) equals 1
gx

dVx
dx . The general equations

(2.4), particularized to a 1-dimensional Riemannian manifold, read:{
ẋ = v,

v̇ = −G
γxv

2 − 1
gx

dVx
dx − µ(gxv

2)ε−1v − ϕx(v).
(2.13)

An interesting special case is the one where the metric is independent of the position, namely gx = 1,

that implies
G
γx = 0. In this case, the dynamical system (2.13) particularizes to:{

ẋ = v,

v̇ = −dVx
dx − µv

2(ε−1)v − ϕx(v).
(2.14)

The above dynamical system is a prototype for the classical nonlinear damped oscillators recalled in the
Introduction, such as the van der Pol oscillator and the simple pendulum.

The sphere S1 embedded in R2 may be described as the set of vectors of the form [cosx sinx]T , with
x ∈ R. It holds:

d

dt

[
cosx
sinx

]
= ẋ

[
− sinx
cosx

]
= v∂x,

where v = ẋ and ∂x = [− sinx cosx]T . Choosing the Euclidean inner product on the tangent spaces
TxS1, it holds that gx = Gx(∂x, ∂x) = [− sinx cosx][− sinx cosx]T = 1. Hence, the dynamical equations
on S1 endowed with the Euclidean product are as in (2.14).

The exponential map corresponding to the above geometric setting may be expressed as:

expx(v∂x) = cos(v)x+ sin(v)∂x. (2.15)

Given two points y, z ∈ S1, solving the equation z = expy(v∂y) in the unknown v gives v = arccos(zT y),
hence:

logy(z) = arccos(zT y)∂y, (2.16)
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and the geodesic distance between the points x and z is given by:

d(z, y) = | arccos(zT y)|. (2.17)

In the above expressions, the superscript T denotes matrix transpose and the symbol ‘arccos’ denotes
the inverse cosine function. The tangent spaces have the structure TxSn−1 = {v ∈ Rn|vTx = 0}.
Parametrizing the point y by [cosx sinx]T and the point z by [cos r sin r]T , the squared geodesic distance
may be written as d2(z, y) = (x− r)2.

3. Discrete-time oscillators on special manifolds. The numerical integration of the differential
equations describing non-linear oscillators on the spaces Rn is challenging and requires some specific
numerical techniques [45]. Likewise, the numerical integration of the differential system (2.4) on specific
curved manifolds of interest may be tackled by geometrically-sound integration techniques. In a numerical
setting, the continuous-time state-pair function I 3 t 7→ (x(t), v(t)) ∈ TM is replaced by a discrete-time
state-pair sequence N 3 k 7→ (xk, vk) ∈ TM .

A discrete-time rule to solve numerically a differential equation of the type ẋ = v on a flat space
prescribes to move forward the point xk to the point xk+1 along a straight line of direction vk. By
replacing the notion of straight line with the notion of geodesic line, the following (inherently nonlinear)
discrete-time rule is obtained:

xk+1 = expxk(h vk), (3.1)

where the time-interval h > 0 denotes a time-discretization stepsize. In a more sophisticated setting,
the geodesic line could be replaced by a Riemannian polynomial (see, for example, the study [2] on the
geometry of Riemannian cubic polynomials), although one such numerical solution is not made use of
in the present paper. Likewise, the notion of geodesic stepping might be generalized by the notion of
retraction-based stepping [13, 19].

In order to solve the differential equation on the variable v on the tangent bundle of a general manifold,
the notion of parallel transport needs to be invoked. In fact, the geometric velocity’s continuous-time
evolution equation on the tangent bundle is either a differential equation on a collection of linear spaces
or a differential equation on a single linear space, hence, it may be solved numerically by a Euler-like
discrete stepping method with the ‘correction’ of parallel transport. In fact, consider the tangent-bundle
differential equation v̇ = F (x, v), where x(t) ∈ M , v(t) ∈ Tx(t)M and F : TM → TM . The first time-
derivative of the field v(t) may be approximated via a finite-difference method corrected for the curvature
of the manifold M as follows:

d

dt
v(t) ≈

G
Pt+h→t[v(t+ h)]− v(t)

h
,

where h > 0 denotes a discretization stepsize. (This is, in fact, an approximation of the covariant
derivative of the vector field v.) Note that it would not be geometrically sound to compare the tangent
vectors v(t + h) and v(t) because, on a curved manifold, they belong to different tangent spaces. By
using the discrete-time notation xk and vk for the state-variables, the differential equation v̇ = F (x, v) is
approximated as:

G
Pxk+1→xk(vk+1)− vk

h
= F (xk, vk).

By making explicit the value vk+1, one gets the parallel-transported forward Euler stepping method:

vk+1 =
G
Pxk→xk+1 [vk + hF (xk, vk)].
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According to this numerical integration scheme, the second differential equation of the system (2.4) may
be solved numerically through the discrete-time rule:

vk+1 =
G
Pxk→xk+1 [vk + h(−(G]xk ◦ dxk)Vx + G]xk(fx))]. (3.2)

Note that the Christoffel term is not necessary anymore because the numerical solver ensures the vector
vk+1 to be tangent to the manifold M at the point xk+1. In the case that the manifold M is a Lie
group, however, the tangent bundle is trivial, therefore parallel transport is no longer required to solve
the differential equation on the variable v, as it will be illustrated in the following subsections.

The specific manifolds recalled in the following subsections, of particular interest in applications, are
the Stiefel manifold, the special orthogonal group, the unit hypersphere and the manifold of symmetric
positive-definite matrices.

3.1. Discrete-time second-order autonomous oscillators on the unit-hypersphere. The

unit hypersphere is defined as Sn−1def
=
{
x ∈ Rn|xTx = 1

}
. A number of algorithms insist on the manifold

Sn−1, as in blind deconvolution [12], robust constrained beamforming [10] and antennas arrays design
[18].

For the unit-hypersphere endowed with the canonical metric Gx(w, v) = wT v, it holds that:
G
Γx(v, v) = x‖v‖2,
G
Px→y(w) =

[
In − (In−xxT )yyT

1+xT y
− xyT

]
w,

(3.3)

where the symbol ‖·‖ denotes the vector 2-norm, the symbol In denotes a n×n identity matrix, x ∈ Sn−1,
w, v ∈ TxSn−1. It is assumed that xT y 6= −1 in the expression of the parallel transport.

For the unit-hypersphere endowed with the canonical metric, the squared Riemannian distance be-
tween two sufficiently-close points x, y ∈ Sn−1 may be expressed in closed form as:

d2(x, y) = arccos2(xT y). (3.4)

Likewise, the exponential map and its inverse, the logarithmic map, may be expressed in closed form as:{
expx(v) = x cos(‖v‖) + v sinc (‖v‖),
logx(y) = (In − xxT )y(sinc d(x, y))−1.

(3.5)

In the expression of the exponential, it is assumed that v 6= 0
Whenever the p.e.f. Vx is not written in terms of the Riemannian distance function but as a plain

function of the vector-variable x (as, for instance, the quadratic potential Vx = 1
2x

TSx), its Riemannian
gradient may be computed via the expression:

G]x(dxVx) = (In − xxT )∂xVx. (3.6)

By gathering the Christoffel operator and the Riemannian gradient of the p.e.f., the following nonlinear
oscillator is obtained:{

ẋ = v,
v̇ = −‖v‖2x− (In − xxT )∂xVx − µ‖v‖2(ε−1)v − ϕx(v),

(3.7)

where x(0) = x0 ∈ Sn−1, v(0) = v0 ∈ Tx0
Sn−1 and ϕx : TxSn−1 → TxSn−1.

According to the expressions of the geometric quantities of interest recalled above, the discrete-time
version of the dynamical system (3.7) reads:{

xk+1 = xk cos(h‖vk‖) + h vk sinc (h‖vk‖),

vk+1 =
G
Pxk→xk+1 [vk − hµ‖vk‖2(ε−1)vk − hϕxk(vk)− h(In − xkxTk )∂xkVx],

(3.8)
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with h > 0 being a discretization stepsize for the dynamical system and k = 0, 1, 2, . . .. Note that the
Christoffel term is a normal component and hence it was taken out from the equations. The system state
is represented by the variable-pair (xk, vk) ∈ TSn−1 for any k ∈ N.

3.2. Discrete-time second-order autonomous oscillators on the manifold of special or-
thogonal matrices. The manifold of special orthogonal matrices (namely, of the multi-dimensional rota-

tions) is defined as SO(n)
def
=
{
x ∈ Rn×n|xTx = In, det(x) = 1

}
. The tangent spaces exhibit the structure

TxSO(n) = {xω|ω ∈ so(n)}, where so(n)
def
= {ω ∈ Rn×n|ωT + ω = 0}. A number of applications deal with

special orthogonal matrices as invariant visual perception [32] and blind source separation [20]. (For a
review of other applications, readers might want to see, e.g., [11].)

The tangent bundle TSO(n) may be trivialized as SO(n)×so(n). The Christoffel operator associated
with the special orthogonal group endowed with the canonical metric Gx(w, v) = tr(wT v), reads:

G
Γx(xω, xω) = −xω2, (3.9)

where x ∈ SO(n), ω ∈ so(n).
For the special orthogonal group endowed with the canonical metric, the exponential map and the

logarithmic map may be expressed in closed form as:{
expx(v) = xExp(xT v),
logx(y) = xLog(xT y),

(3.10)

where x, y ∈ SO(n), w, v ∈ TxSO(n), the symbols ‘Exp’ and ‘Log’ denote the matrix exponential and the
principal matrix logarithm, respectively.

The squared Riemannian distance between two sufficiently-close points x, y ∈ SO(n) may be expressed
in closed form as:

d2(x, y) = −tr(Log2(xT y)), (3.11)

where the symbol ‘tr’ denotes matrix trace. (Note that the skew-symmetric matrix Log(xT y) is semidefinite-
negative, hence −tr(Log2(xT y)) ≥ 0.)

Whenever the p.e.f. Vx is written as a plain function of the matrix-variable x (as, for instance, the
quadratic potential Vx = 1

2 tr(xTSx)), its Riemannian gradient may be computed via the expression:

G]x(dxVx) = 1
2

(
∂xVx − x∂Tx Vxx

)
. (3.12)

Straightforward calculations lead to the dynamics:{
ẋ = xω,
ω̇ = − 1

2

(
xT∂xVx − ∂Tx Vxx

)
− µ‖ω‖2(ε−1)ω − ϕ̃x(ω),

(3.13)

with x(0) = x0 ∈ SO(n) and ω(0) = ω0 ∈ so(n). In the present context, ϕ̃x is a so(n)-algebra endomor-
phism.

The system (3.13) may be implemented numerically as:{
xk+1 = xkExp(hxkωk),
ωk+1 = 1

2h
(
∂TxkVxxk − x

T
k ∂xkVx

)
+ (1− hµ‖ωk‖2(ε−1))ωk − hϕ̃xk(ωk),

(3.14)

where h > 0 plays the role of a discretization stepsize for the dynamical system. The system state
is represented by the pair (xk, ωk) ∈ SO(n) × so(n) for k ∈ N. The first equation of the numerical
method (3.14) represents a geodesic-based step-forward numerical approximation of the flow associated
with the first differential equation on the tangent bundle TSO(n). The second equation represents a direct
Euler-like step-forward method that can be implemented as is because the flow of the second differential
equation of the system (3.13) takes place on a single linear space, namely, the Lie algebra so(n).
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3.3. Discrete-time second-order autonomous oscillators on the manifold of symmet-
ric, positive-definite matrices. The manifold of symmetric, positive-definite matrices is defined

as S+(n)
def
= {x ∈ Rn×n|xT − x = 0, x > 0}. The tangent bundle exhibits a trivial structure as

TxS+(n) = S(n)
def
= {v ∈ Rn×n|vT − v = 0} for every x ∈ S+(n). Symmetric positive-definite matri-

ces are used in the analysis of deformations [31], in pattern recognition [17], in cognitive computation
[14] and in computational neurology [4].

Since S+(n) is a Lie group1, its tangent bundle TS+(n) may be trivialized as S+(n) × S(n). The
Christoffel operator associated with the manifold of symmetric, positive-definite matrices endowed with
the canonical metric Gx(w, v) = tr(x−1wx−1v), reads:

G
Γx(v, v) = −vx−1v, (3.15)

with x ∈ S+(n) and w, v ∈ TxS+(n).
The exponential map and the logarithmic map may be expressed in closed form as: expx(v) =

√
xExp

(√
x−1v

√
x−1

)√
x,

logx(y) =
√
xLog

(√
x−1y

√
x−1

)√
x.

(3.16)

where x ∈ S+(n) and v ∈ TxS+(n), while the symbol
√
· denotes symmetric matrix square root.

According with the structure of the logarithmic map, the squared Riemannian distance between two
symmetric, positive-definite matrices x, y ∈ S+(n) takes the expression:

d2(x, y) = tr
(

Log2
(√

x−1y
√
x−1

))
. (3.17)

Whenever the p.e.f. Vx is written as a plain function of the matrix-variable x, its Riemannian gradient
may be computed via the expression:

G]x(dxVx) = 1
2x
(
∂xVx + ∂Tx Vx

)
x. (3.18)

In several interesting applications, such as in the classification of covariance matrices for brain-computer
interfacing, the potential energy is a function of the Riemannian distance (see, for instance, the contri-
bution [41]).

By gathering the expressions of the Christoffel operator and of the Riemannian gradient of the
potential energy function, the following dynamical system equations are obtained:{

ẋ = v,

v̇ = vx−1v − 1
2x
(
∂Tx Vx + ∂xVx

)
x− µ‖v‖2(ε−1)

x v − ϕ̃x(v).
(3.19)

In the present case, ϕ̃ : S+(n)× S(n)→ S(n). The system (3.19) may be implemented numerically as: xk+1 =
√
xk Exp

(
h
√
x−1
k vk

√
x−1
k

)
√
xk,

vk+1 = h
[
− 1

2xk(∂TxkVx + ∂xkVx)xk
]

+ (1− hµ‖v‖2(ε−1)
xk )vk − hϕ̃xk(vk),

(3.20)

where h > 0 plays the role of a discretization stepsize for the nonlinear oscillator and k = 0, 1, 2, . . .. In
this case, the system state is represented by the pair (xk, vk) ∈ S+(n)× S(n) for k ∈ N.

1We recall that the space S+(n) is not an algebraic group with respect to the standard matrix multiplication (namely,
given two matrices x1, x2 ∈ S+(n), their standard matrix product x1 · x2 is, in general, not symmetric). However, it can

be made an algebraic group with respect to a “modified” multiplication, namely x1 � x2
def
= Exp(Log(x1) + Log(x2)) for

any x1, x2 ∈ S+(n). The group identity, in this setting, is the unit matrix In (in fact x1 � In = In � x1 = x1) and the
group inversion is the standard matrix inversion (which may be rewritten as x−1

1 = Exp(−Log(x1)), that helps showing

that x1 � x−1
1 = x−1

1 � x1 = In).
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3.4. Discrete-time second-order autonomous oscillators on the compact Stiefel manifold.

The compact Stiefel manifold is defined as St(n, p)
def
= {x ∈ Rn×p|xTx = Ip}, where p ≤ n. The tangent

spaces to the Stiefel manifold exhibit the structure TxSt(n, p)
def
= {v ∈ Rn×p|xT v + vTx = 0}. Exemplary

applications where the compact Stiefel manifold plays a prominent role are non-negative matrix factor-
ization [48], direction of arrival estimation [23], electronic structures computation [7] and factor analysis
in psychometrics [8]. For the Stiefel manifold, some quantities of interest are not available in closed form
in the scientific literature, hence, a specific discrete-time version of the oscillator equations need to be
devised.

When the Stiefel manifold is endowed with its canonical metric

Gx(w, v) = tr
(
wT v

)
− 1

2 tr
(
wTxxT v

)
, (3.21)

the following geometric characterization holds:

G
Γx(v, v) = −vvTx− xvT (In − xxT )v,

expx(v) = [x q]Exp

([
xT v −rT
r 0p

])[
Ip
0p

]
,

G]x(dxVx) = ∂xVx − x∂Tx Vxx,
G
Pγx,v

0→t(v) = [v − xrT ]Exp

(
t

[
xT v −rT
r 0p

])[
Ip
0p

]
,

(3.22)

where q and r denote the factors of the compact QR decomposition of the matrix (In − xxT )v and 0p
denotes a zero p × p matrix. Note that, for the Stiefel manifold endowed with the canonical metric,
to the best of the author’s knowledge, the expression of the Riemannian distance d(·, ·), of the general
parallel transport operation and of the logarithmic map are unknown2. Hence, the equations (3.22) were
developed by making use of the parallel transport of the initial tangent vector along its own geodesic
only.

By the expressions of the Riemannian gradient of the potential energy function and of the Christoffel
form, the following dynamical system is obtained:{

ẋ = v,

v̇ = vvTx+ xvT (In − xxT )v − (∂xVx − x∂Tx Vxx)− µ‖v‖2(ε−1)
x v − ϕx(v),

(3.23)

where ϕ : TSt(n, p)R→ TSt(n, p).
According to the expression of the geodesic on the Stiefel manifold endowed with the canonical

metrics and of the self-parallel-transport formula corresponding to the canonical metrics, the dynamical
system (3.23) may be implemented as:

ak
def
= (1− hµ‖vk‖2(ε−1)

xk )vk − hϕxk(vk)− h
(
∂xkV − xk(∂xkV )Txk

)
,

(qk, rk)
def
= cqr((In − xkxTk )ak),

Ek
def
= Exp

(
h

[
xTk ak −rTk
rk 0p

])[
Ip
0p

]
,

xk+1 = [xk qk]Ek,
vk+1 = [ak − xkrTk ]Ek,

(3.24)

where h > 0 is a stepsize for the nonlinear oscillator, cqr(·) denotes the compact QR factorization operator
and k = 0, 1, 2, . . .. The system state is represented by the pair (xk, vk) ∈ TSt(n, p) for k ∈ N.

2It might be interesting to the practitioners to know that there exists an iterative algorithm that is able to compute,
only numerically and approximately, the logarithmic map (and hence the distance) of two Stiefel matrices (provided that
these matrices do not lay too far from one another). The algorithm and the related computer code are publicly available
[50]).
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3.5. Discussion on energy conservation. For the sake of notation conciseness, the discrete-time,
nonlinear oscillator equations are rewritten here as in the Section 3, namely:{

xk+1 = expxk(h vk),

vk+1 =
G
Pxk→xk+1 [vk + hF (xk)],

(3.25)

where it is assumed that the forcing term F : M → TM stems from a potential energy function only,
namely, F (xk) = −G]xk(dxkVx). Recall that the parallel transport operator is linear in its argument
(although it is markedly nonlinear in the quantities xk and xk+1), therefore, the second equation may be
written equivalently as:

vk+1 =
G
Pxk→xk+1(vk) + h

G
Pxk→xk+1 [F (xk)]. (3.26)

For a conservative oscillator, it was recalled in the Subsection 2.2 that the total energy Hx = Kx+Vx
keeps constant over time. The present subsection aims at investigating whether such property is retained
when passing from the continuos-time equations to the discrete-time equations. The total energy at the
discrete-time k takes the value:

Hxk = Vxk + 1
2Gxk(vk, vk). (3.27)

The total energy at the discrete-time k + 1 takes the value:

Hxk+1
= Vxk+1

+ 1
2Gxk+1

(vk+1, vk+1). (3.28)

Since the inner product G·(·, ·) is bilinear, plugging the right-hand side of the equation (3.26) into the
above relationship yields:

Hxk+1
= Vxk+1

+ 1
2Gxk+1

(
G
Pxk→xk+1(vk),

G
Pxk→xk+1(vk))

+ 1
2h

2Gxk+1
(
G
Pxk→xk+1 [F (xk)],

G
Pxk→xk+1 [F (xk)])

+ hGxk+1
(
G
Pxk→xk+1(vk),

G
Pxk→xk+1 [F (xk)]). (3.29)

Recall that the parallel transport is an isometry, namely, it preserves the inner product with respect to
the metric G, hence:

Hxk+1
= Vxk+1

+ 1
2Gxk(vk, vk) + 1

2h
2Gxk(F (xk), F (xk)) + hGxk(vk, F (xk)).

As a consequence, the total energy at the discrete-time k+ 1 may be written, in terms of the total energy
at the discrete-time k, as:

Hxk+1
−Hxk = Vxk+1

− Vxk + 1
2h

2‖F (xk)‖2xk + hGxk(vk, F (xk)).

Although, when h→ 0, the differenceHxk+1
−Hxk → 0 because xk+1 → xk, for h finite, the conclusion

is that, upon time-discretization of the continuos-time equations, the energy conservation property does
not replicate. It is worth underlying that, if an oscillator is designed with the purpose of producing a
reference signal independently of any physical phenomena, the lack of energy conservation may be ignored.
Numerical simulations suggested that, in cases of interest, the two terms 1

2h
2‖F (xk)‖2xk+hGxk(vk, F (xk))

combine in a way that increases the total energy of the system: in such event, the unwanted (albeit slow)
increase of energy may be countered by an additional dissipative term, such as the one corresponding to
Rayleigh damping.
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4. Examples. The current section presents two examples based on the manifold S2, in order to
illustrate the potential of the devised nonlinear damped oscillators on manifold. The ordinary sphere S2

was chosen because it affords graphical rendering. (The MATLAB c© codes are available on request.)

4.1. A Lorenz-like oscillator on the sphere. The Lorenz oscillator is a classical nonlinear dy-
namical system described by the equations:{

ż = w,
ẇ = −[A+B(z)]w,

(4.1)

where the state z = [z1, z2, z3]T ∈ R3 and

A
def
=

 σ −σ 0
−ρ 1 0
0 0 β

 , B(z)
def
=

 0 0 0
z3 0 z1

−z2 −z1 0

 . (4.2)

(Initial conditions omitted.) For certain values of the parameters σ, ρ, β > 0, the system exhibits a
complex behavior. Setting x(t) = z(t)‖z(t)‖−1 and deriving twice with respect to the temporal parameter
t leads to a version of the Lorenz oscillator on the sphere S2 (see the Appendix A for the detailed
calculations). Such a dynamical system appears as a special case of the general system on the sphere
(3.7) and reads: {

ẋ = v,
v̇ = −‖v‖2x− 2λv − ϕx(v),

(4.3)

where x(0) = x0 ∈ S2, v(0) = v0 ∈ Tx0S2, and

ϕx(v) = (I3 − xxT )[A+ νB(x)](v + λx), (4.4)

with A and B defined as in (4.2) and ν, λ ∈ R being constant parameters.
The above autonomous, damped oscillator was implemented by the discrete-time rule (3.8), namely:{

xk+1 = xk cos(h‖vk‖) + h vk sinc (h‖vk‖),

vk+1 = (1− 2hλ)
G
Pxk→xk+1(vk)− h

G
Pxk→xk+1 [ϕxk(vk)],

with h = 3
500 and k = 0, 1, 2, . . . , 5000. The Figure 4.1 illustrates a trajectory obtained by initializing x0

randomly on the sphere, v0 randomly in the tangent space Tx0
S2, with the classical values of the Lorenz

parameters ρ = 28, σ = 10, β = 8
3 and with the specific parameters of the Lorenz-like oscillator on the

sphere set to ν = 400 and λ = 2 (since 2hλ� 1, the approximation 1− 2hλ ≈ 1 was used in the code).
From the Figure 4.1, the complex non-repeating shape of the trajectory generated by the oscillator over
the surface of the base-manifold may be appreciated. The shape of the trajectory varies greatly when
varying the values of the parameters and the initial conditions.

4.2. An oscillator on the sphere based on a quadratic potential. A special case of the general
autonomous, damped oscillator on the sphere (3.7) is:{

ẋ = v,
v̇ = −‖v‖2x− µ‖v‖v − (I3 − xxT )Sx,

(4.5)

where x(0) = x0 ∈ S2, v(0) = v0 ∈ Tx0
S2 and S ∈ S+(3). The above oscillator corresponds to a quadratic

p.e.f. Vx = 1
2x

TSx and to a generalized Rayleigh damping term with damping exponent ε = 3
2 .
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Fig. 4.1. Oscillatory dynamics on the manifold M = S2 of the dynamical system (4.3)+(4.4). Trajectory over the
unit sphere: The circle denotes the initial point.

The above autonomous, damped oscillator was implemented by the discrete-time rule:{
xk+1 = xk cos(h‖vk‖) + h vk sinc (h‖vk‖),

vk+1 =
G
Pxk→xk+1(vk)− h

G
Pxk→xk+1 [µ‖vk‖vk + (I3 − xkxTk )Sxk],

(4.6)

with h = 1
100 and k = 0, 1, 2, . . . , 5000. The Figure 4.2 illustrates a trajectory obtained by initializing x0

randomly on the sphere, v0 randomly in the tangent space Tx0
S2, S randomly in S+(3) and µ = 1

100 (as
suggested in the Subsection 3.5, the passive damping has the purpose of stabilizing the dynamics against
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Fig. 4.2. Oscillatory dynamics on the manifold M = S2, embedded in the Euclidean space R3, of the system (4.6).
The p.e.f. is Vx = 1

2
xTSx, with S random, symmetric, positive-definite. The left-hand panel illustrates the trajectory over

the sphere (the circle denotes the initial point). The upper panel on the right-hand side illustrates the values of the kinetic
energy Kx (solid line), the potential energy Vx (dotted line) and the total energy Hx (dot-dashed line) over the trajectory.
The lower panel on the right-hand side illustrates the trajectory in terms of the three embedded coordinates x1, x2, x3.

a growth of its Hamiltonian induced by the time discretization). From the Figure 4.2, it is appreciated
how, after a transient phase, the system enters a limit cycle and generates a periodic trajectory over the
base-manifold. The total energy keeps almost constant over the whole trajectory, confirming that the
generalized Rayleigh damping term is able to counter the slow “energy drift” caused by the numerical
integration method.

5. Conclusion. The purpose of the present contribution was to describe a general second-order,
autonomous, damped oscillator model on Riemannian manifolds. Starting from a formulation available
in continuous time [15], we developed discrete-time equations and particularized them to manifolds of
interest in sciences and engineering, such as the hyper-sphere and the space of the symmetric, positive-
definite matrices. Computer simulations served to illustrate the numerical behavior of the devised model.

The present paper aimed at presenting some fundamental notions and properties of non-linear, pos-
sibly chaotic, oscillators on Riemannian manifolds, which might be applied to solving scientific and
engineering problems in the future. Two of such possible employments are:

• Possible application to the optimization of complex functions: The global optimization of com-
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plex, multi-variables, possibly non-differentiable functions is an involved and challenging problem
encountered in diverse fields of applications. Since a non-linear oscillator may produce a chaotic
motion that traverses non-repeatedly a certain search domain, by making use of the known prop-
erties of chaos, an effective optimization method was proposed in the recent past, namely, the
Chaos-based Optimization Algorithm (COA, [3], see, e.g., [42] for a comprehensive review). This
optimization technique may now be extended to the optimization of non-smooth functions on
Riemannian manifolds. It is to be noted how the chaos-based optimization method works by two
subsequent stages, termed ‘waves’: The first wave performs a broad search within the feasible
space and determines a first (sub-optimal) solution, while the second wave is meant to perform
a fine search in a neighborhood of the provisional sub-optimal solution. Such two-stage search
suggests the need of two kinds of oscillatory behaviors: local (i.e., limited to a specific volume of
the feasible manifold) and global (i.e., potentially able to explore the whole manifold volume).

• Possible application to encryption for the secure transmission of information: Encryption of im-
portant information benefits from chaotic oscillators, in that chaotic signals improve the security
of the encrypted data (and, as a by-product, it might result in a significant data compression, see
[28]). The resulting high-security architectures are ideal in a number of real-life applications such
as the transmission and storage of medical images and of legal documents. In general, non-linear
oscillators are the inner engines of such secure communication systems, where the variables gen-
erated by the oscillators are used to mask information signals [47]. These systems may now be
extended to masking and encrypting structured (i.e., manifold-valued) signals as well as multiple
real-valued (or complex-valued) signals.

On the theoretical side, there are two foreseen future steps to be taken along the present research
thread, namely:

• Development of more sophisticated numerical integration techniques: The numerical integration
technique used within the present paper is a forward Euler scheme adapted to curved spaces by
means of appropriate differential-geometrical tools. There exist further schemes in the literature
of numerical calculus that might be implemented instead, such as the backward Euler method,
the “trapezoidal” method, the Cavalieri-Simpson rule and the Newton-Cotes rule. Some of these
methods are potentially more accurate than the forward Euler method but also more burdensome
from a computational point of view, therefore, the forward Euler method was chosen in this paper
as a good trade-off between numerical accuracy and computational ease. In future research
endeavors, it will be interesting to extend some of the above methods to curved manifolds and,
in particular, the Runge-Kutta scheme, which is particularly popular in engineering and applied
sciences: see, for example, the paper [49] which still covers the Euclidean (non-curved) case.

• Development of synchronization techniques: The temporal synchronization of two oscillators of
the same type (for example, two Lorenz-like oscillators), insisting on the same manifold as state
space, seems of prime importance in the secure transmission of information (see, for example, the
contribution [47]). Temporal synchronization is a well-studied problem in the Euclidean setting
and its extension to curved spaces appears as a challenging scientific endeavor. The extension of
a control-theoretic synchronization method based on the Lyapunov stability theory (commonly
referred to in systems theory as pinning control scheme) to first-order and second-order dynamical
systems on manifolds is currently under investigation by the present author.
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Appendix A. Detailed derivation of the Lorenz-like model on the unit sphere. Upon intro-
ducing the state-vector z = [z1 z2 z3]T ∈ R3, the Lorenz oscillator may be expressed by the following
system of three non-linear differential equations: ż1 = σ(z2 − z1),

ż2 = ρz1 − z1z3 − z2,
ż3 = z1z2 − βz3,

(A.1)

equipped with the initial conditions z1(0) = z10, z2(0) = z20 and z3(0) = z30. The constant σ denotes
the Prandtl number and the constant ρ denotes the Rayleigh number. The first-order system (A.1) can
be represented as a second-order dynamical system by taking the time-derivative of both sides of the
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Fig. A.1. Exemplary behavior of a Lorenz model in terms of the three variables (z1, z2, z3) ∈ R3.

equations (A.1), that leads to:
ż = w, w = [w1 w2 w3]T ∈ R3,

ẇ = −C(z)w, C(z)
def
=

 σ −σ 0
z3 − ρ 1 z1

−z2 −z1 β

 , (A.2)

equipped with the initial conditions z1(0) = z10, z2(0) = z20 and z3(0) = z30, w1(0) = σ(z20 − z10),
w2(0) = ρz10 − z10z30 − z20 and w3(0) = z10z20 − βz30. The Figure A.1 illustrates the state of a Lorenz
model in terms of the three variables (z1, z2, z3) ∈ R3.

The Lorenz system (A.1) or (A.2) generates a trajectory z(t) evolving freely in the space R3 and
forming a complex, non-repeating, three-dimensional curve. In order to reformulate the Lorenz system
on a three-dimensional sphere S2, it pays to define a new variable as

x
def
=

z

‖z‖
, (A.3)

where the symbol ‖ · ‖ denotes again the standard vector 2-norm, namely ‖z‖def
=
√
zT z. In order to

formulate the sought Lorenz system on the manifold S2, we start from seeking the law governing the
evolution of the acceleration ẍ. Note that, at any time, it holds that xTx = 1.

Let us start by computing the first-order derivative of the variable x(t) with respect to the parameter
t. It is understood that the manifold S2 is embedded into the ambient space R3. Note that

d

dt
‖z‖ =

d

dt
(zT z)

1
2 = 1

2 (zT z)−
1
2 2żT z =

żT z

‖z‖
. (A.4)
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Consequently, we have that:

ẋ =
ż‖z‖ − z(d‖z‖/dt)

‖z‖2
=

ż

‖z‖
− z(żT z)

‖z‖3
= (I − xxT )

ż

‖z‖
, (A.5)

where I denotes a 3×3 identity matrix. Note that xT ẋ = 0. By deriving both sides of the equation (A.5)
with respect to the parameter t, we get:

ẍ = (−ẋxT − xẋT )
ż

‖z‖
+ (I − xxT )

d

dt

(
ż

‖z‖

)
. (A.6)

Note that:

d

dt

(
ż

‖z‖

)
=
z̈‖z‖ − ż(żT z/‖z‖)

‖z‖2
=

z̈

‖z‖
− żżTx

‖z‖2
,

where the equation (A.4) has been used again. Consequently, it holds that:

(I − xxT )
d

dt

(
ż

‖z‖

)
=

z̈

‖z‖
− żxT ż

‖z‖2
− xxT z̈

‖z‖
+
x(xT ż)2

‖z‖2
.

Plugging the last expression into the derivative (A.6) yields:

ẍ = − ẋx
T ż

‖z‖
− xẋT ż

‖z‖
+

z̈

‖z‖
− żxT ż

‖z‖2
− xxT z̈

‖z‖
+
x(xT ż)2

‖z‖2
. (A.7)

Note that the matrix I − xxT is an orthogonal projector from R3 to TxS2, therefore, the equation (A.5)
tells that the vector ẋ is an orthogonal projection of the vector ż

‖z‖ over TxS2. Consequently, one may

write the quantity ż as a linear combination of the tangent component ẋ and of the normal component
x as

ż = ‖z‖ẋ+ λ̄x, with λ̄ ∈ R arbitrary.

It follows that some terms in the right-hand side of the expression (A.7) may be simplified as shown
below:

ẋxT ż

‖z‖
=
ẋxT ẋ‖z‖+ λ̄ẋ

‖z‖
=

λ̄ẋ

‖z‖
,

xẋT ż

‖z‖
=
xẋT ẋ‖z‖+ λ̄xẋTx

‖z‖
= x‖ẋ‖2,

żxT ż

‖z‖2
=

(ẋ‖z‖+ λ̄x)λ̄

‖z‖2
=

λ̄ẋ

‖z‖
+
λ̄2x

‖z‖2
,

x(xT ż)2

‖z‖2
=

λ̄2x

‖z‖2
,

where the properties xTx = 1 and xT ẋ have been used repeatedly. From the system (A.2), we may also
write:

z̈ = −C(z)ż = −C(z)(ẋ‖z‖+ λ̄x).

Plugging the last expressions into the formula (A.7) gives:

ẍ = −(I − xxT )
C(z)ż

‖z‖
− x‖ẋ‖2 − 2λ̄ẋ

‖z‖
. (A.8)

Let us analyze, in details, the three terms on the right-hand side of the equation (A.8):
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• The term −x‖ẋ‖2 is precisely the Christoffel term predicted in the equation (3.7).
• The quantity ‖z‖ is exogenous with respect to the chaotic oscillator and is replaced by a constant

ν > 0 in the present example. Then, in the term 2λ̄ẋ
‖z‖ , it is assumed as absorbed by the constant

λ
def
= λ̄

ν , which is arbitrary. The resulting term −2λẋ represents an instance of the friction-type
damping discussed in the Subsection 2.2.

• The addendum −(I − xxT )C(z)ż
‖z‖ is the Lorenz term and may be further elaborated as follows.

Note that C(z) = A + B(z), where the constant 3 × 3 matrix A and the matrix-function B(z)
are defined as in (4.2), namely:

A
def
=

 σ −σ 0
−ρ 1 0
0 0 β

 , B(z)
def
=

 0 0 0
z3 0 z1

−z2 −z1 0

 .
The matrix-function B(z) is linear in z, hence, setting z = νx from (A.3), one may write C(z) =
A+ νB(x), therefore:

−(I − xxT )
C(z)ż

‖z‖
= (xxT − I)[A+ νB(x)]

νẋ+ λ̄x

ν
= (xxT − I)[A+ νB(x)] (ẋ+ λx) ,

that is the final expression of the Lorenz term.
In conclusion, the Lorenz oscillator on the unit sphere takes on the form expressed in the equations (4.3)
and (4.4).
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