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Abstract

Principal component analysis (PCA) is a well-known statistical processing technique that allows to study the correlations among the

components of multivariate data and to reduce redundancy by projecting the data over a proper basis. The PCA may be performed both in a

batch method and in a recursive fashion; the latter method has been proven to be very effective in presence of high dimension data, as in

image compression. The aim of this paper is to present a comparison of principal component neural networks for still image compression and

coding. We ®rst recall basic concepts related to neural PCA, then we recall from the scienti®c literature a number of principal component

networks, and present comparisons about the structures, the learning algorithms and the required computational efforts, along with a

discussion of the advantages and drawbacks related to each technique. The conclusion of our wide comparison among eight principal

component networks is that the cascade recursive least-squares algorithm by Ci-chocki, Kasprzak and Skarbek exhibits the best numerical

and structural properties. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Data reduction techniques aim at providing an ef®cient

representation of the data; we consider the research stream

which focuses on the compression procedure consisting of

mapping the higher dimensional input space into a lower

dimensional representation space by means of a linear trans-

formation, as in the Karhunen±LoeÂve Transform (KLT).

The classical approach for evaluating the KLT requires

the computation of the input data covariance matrix and

then the application of a numerical procedure to extract

the eigenvalues and the corresponding eigenvectors;

compression is obtained by the use of the only eigenvectors

associated with the most signi®cant eigenvalues as a new

basis. When large data sets are handled, this approach is not

practicable because the dimensions of the covariance matrix

become too large to be manipulated. In addition, the whole

set of eigenvectors has to be evaluated even though only

some of them are used.

In order to overcome these problems, neural-network-

based approaches were proposed. Neural principal compo-

nent analysis (PCA) is a second-order adaptive statistical

data processing technique introduced by Oja [23±25]

which helps to remove the second-order correlation

among given random processes. In fact, consider the station-

ary multivariate random process x�t� [ Rp and suppose its

covariance matrix F �def
E��x 2 E�x���x 2 E�x� T� exists

bounded. If F is not diagonal, then the components of x�t�
are statistically correlated. This second-order redundancy

may be partially (or completely) removed by computing a

linear operator F such that the new random signal de®ned by

y�t� �def
F T�x�t�2 E�x�� [ Rm has uncorrelated components,

with m # p arbitrarily selected [7,12,24,25,29,31]. The

operator F is known to be the matrix formed by the eigen-

vectors of F corresponding to its largest eigenvalues [7,12].

The elements of y�t� are termed principal components of

x�t�; their importance is proportional to the corresponding

eigenvalues s 2
i �def

E�y2
i � which are supposed to be arranged

in descending order �s 2
i $ s 2

i11�:
The data-stream y�t� represents a compressed version of

data-stream x�t�; after the reduced-size data-stream has been

processed (i.e. stored, retrieved, transmitted), it needs to be

recovered, i.e. brought back to its original size. However,

the principal component-based data reduction technique is

not loss-less, thus only an approximation x̂�t� of the original

data-stream may be recovered. As F is an orthonormal

operator, an approximation of x�t� is given by x̂�t� �
Fy�t�1 E�x�; it minimizes the reconstruction error E�ix 2
x̂i2� which equals

Pp
k�m 1 1 s

2
k :

In 1982, Oja [23] proposed the use of a simple neural unit

to extract the ®rst principal component from the input. Since

this pioneering work, several new learning algorithms have

been proposed for extending the one-unit neural system to a
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complete neural network for the extraction of more than one

principal component.

The aim of this paper is to present a comparison of prin-

cipal component neural networks applied to still image

compression, which is indeed a natural ®eld of application

of PCA [13], as numerical simulations show that a little

amount of principal components is required in order to

reconstruct a good quality image after compression. More-

over, as any component is intrinsically endowed with a

measure of signi®cance given by its power (or variance),

it is really straightforward to perform ef®cient components

coding by optimal bit allocation, which provides an extra

compression.1

The paper is organized as follows: in Section 2 we present

a description of considered algorithms and associated neural

structures. Some details about implementation are given in

Section 3. Section 4 is devoted to assess results with numer-

ical and structural comparisons; compression performances

are discussed along with ef®cient bit allocation, network's

generalization capability, which provides an useful tool for

performing image compression without network's relearn-

ing, and colored image compression issues. Concluding

remarks and ®nal comments are given in Section 5.

2. Principal component networks

The classical contribution in the ®eld of principal compo-

nent networks has been given by Sanger [29], who used an

online version of the well-known Gram±Schmidt orthogo-

nalization algorithm, termed generalized Hebbian learning

(GHA). Also, Rubner and Tavan [28] and later Kung and

Diamantaras [7,21] introduced a linear neural network

endowed with lateral inhibitory connections and an

additional set of learning equations for achieving output

de-correlation, termed adaptive principal-component

extractor (APEX).

Over recent years, several authors tried to give different

rules for generalizing classical ones. It is worth citing the

recursive least-square approach (RLS-PCA) by Bannour

and Azimi-Sadjadi [3]; the class of c-APEX learning

rules, introduced as a generalization of APEX rule by

Fiori et al. [9±11]; the successive application of modi®ed

Hebbian learning (SAMH) by Abbas and Fahmi [1], who

introduced the concept of sequential extraction of principal

components from previously de¯ated data; the cascade

recursive least-squares approach (CRLS) by Cichocki et

al. [5], that combines the advantages of both SAMH and

RLS-PCA. Also worth mentioning are the non-linear exten-

sions to PCA by Oja, Karhunen and coworkers [14,17±

19,26], the extensions of PCA for performing independent

component analysis (ICA) by Karhunen, Oja and coworkers

[18,20,30], the recently developed extensions to classical

PCA to its complex-valued counterpart by DeCastro et al.

[6] and the non-linear complex-valued counterpart for

performing blind separation of circularly distributed signals

by Fiori [8]. A PCA-related argument is principal subspace

extraction, which is the computation of the subspace of the

input space spanned by the principal eigenvectors

[15,16,22,24].

The algorithms considered within this paper are the GHA

[29], the APEX [7], the ones belonging to c -APEX class

[11], the SAMH [1], RLS-PCA [3], and CRLS [5]. The

reasons for which we chose to present a comparison of

these algorithms, among the cited ones, is that we wish to

compare low-complexity second-order data reduction tech-

niques only, and that the known algorithms for performing

independent component analysis have not yet proven to give

reliable results in large-scale data processing. Also, we refer

to the interesting paper by Puga and Alves [27] who tested

the classical variance-based bit allocation scheme with ICA

concluding that, in comparison, PCA produces better distor-

tion-ratio pro®les as well as better visual results.

The considered algorithms base upon Oja's principal

component neuron described by y�t� � w T�t�x�t�; where

x�t� [ Rp represents the stationary zero-mean multivariate

random process whose ®rst principal component is looked

for, w�t� [ Rp is the neuron's weight vector, and y�t� [ R is

the neuron's output signal. Oja's learning rule [23] reads:

w�t 1 1� � w�t�1 h�y�t�x�t�2 y2�t�w�t��; �1�
where h is a small learning step-size and t denotes discrete

time. This expression clearly reveals the presence of the

Hebbian term 1x�t�y�t� and of a stabilizing term, thus it is

also referred to as stabilized (or modi®ed) Hebbian learning

equation.

2.1. The feed-forward network and GHA rule

The GHA proposed by Sanger in Ref. [29] is one among

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±0002

1 In practice the values of the principal components by themselves are not

suf®cient for the reconstruction of the original signals; in fact, the compres-

sion operator and any other information concerning the compression proce-

dure (as the mean value and the bit allocation scheme) must be part of the

compressed data. This slightly reduces the achievable compression rate;

this problem will not be considered within the present paper.

Fig. 1. Single-layered feed-forward neural network for GHA.
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neural network to extract a selected number of principal

components. It applies to a single-layered feed-forward

neural network (see Fig. 1) described by:

y�t� �WT�t�x�t�; �2�
where x [ Rp represents the input vector, y [ Rm denotes

network's output vector and W [ Rp£m is the weight-

matrix connecting inputs to outputs; here we assume m #
p arbitrarily selected. The GHA learning rule can be written

as:

W�t 1 1� �W�t�1 h�x�t�yT�t�2 W�t�LT�y�t�yT�t���; �3�
where h is a small positive learning step-size, and the opera-

tor LT[ ] returns the lower-triangular part of the matrix

contained within.

This rule implies parallel extraction of all m principal

components. It can be viewed as a modi®cation of Oja's

rule (1) by rewriting Eq. (3) in local mode (for each entry

wij):

wij�t 1 1� � wij�t�

1 n�yi�t� �xj�t�2
X
k,1

wkj�t�yk�t��|��������{z��������}
x 0j

2 y2
1�t�wij�t��;

�4�
where the modi®cation consists in the introduction of x 0j;
which takes the place of xj. In this way it is possible to

use the same algorithm in sequential mode also, which

means sequentially extracting one component at a time.

The GHA rule has two ¯aws: there is no general criterion

to choose the value of learning rate, which was originally

chosen in a heuristic way using a trial-and-error approach,

and the applied Gram±Schmidt orthogonalization

procedure is ineffective with principal components related

to the smallest eigenvalues [5].

2.2. The laterally-connected architecture and APEX

learning rule

Kung and Dimantaras presented in Ref. [7] a learning rule

referred to as APEX that applies to a neural network with

lateral connections, shown in Fig. 2, having the hierarchical

structure proposed by Rubner and Tavan in Ref. [28]. The

aim of lateral connections in li � �li1; li2;¼; lim�T; also

termed ªanti-Hebbian connectionsº or ªorthogonalization

connectionsº, is to orthogonalize the synaptic weights

extracted by the network. The network structure is described

by the following relationships:

~yi�t� � ~W
T
i x�t�; �5�

yi�t� � wT
i �t�x�t�2 lT

i �t�~yi�t�; �6�
where yi is the output of the ith neuron (note the sequential

structure), wi is the weight-vector connected to the output yi,

li is the lateral-connections vector connected to the previous

i 2 1 outputs and ~yi is just the vector of previous outputs

�1=�i 2 1��: Thus ~Wi is the weight-matrix connecting the

inputs to the ®rst i 2 1 outputs and does not include wi;

only wi and li are trained when the ith neuron is interested

by learning, while ~Wi remains constant.

The tth iteration of the learning algorithm is described by:

wi�t 1 1� � wi�t�1 h�yi�t�x�t�2 y2
i �t�wi�t��; �7�

li�t 1 1� � li�t�1 h�yi�t�~yi�t�2 y2
1�t�li�t��: �8�

Kung and Dimantaras [7] also described a parallel version

for APEX. As opposed to the sequential one, the parallel

version can extract all the m principal components at the

same time. A way to build up the parallel version from the

sequential one is to recast the learning equation in matrix

form; for the input±output relationship we get:

y�t� �WT�t�x�t�1 LT�t�y�t�; �9�
and for the learning algorithm:

W�t 1 1� � hX�t� ~Y�t�1 W�t��Im 2 h ~Y
2�t��; �10�

L�t 1 1� � 2hSUT�Y�t� ~Y�t��1 L�t��Im 2 h ~Y
2�t��: �11�

It is important to remark that in Eq. (9), the quantities x�t�;
y�t�; W�t� and L�t� must be evaluated at the same time. In

Eqs. (10) and (11) X is a p £ m matrix, Y and ~Y are m £ m

matrices de®ned by:

X �def �x x¼x�|��{z��}
m

; Y �def �y y¼y�|��{z��}
m

; ~Y �def
diag�y1; y2;¼; ym�

and operator SUT[ ] returns the strictly upper-triangular part

of the matrix contained within.

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±000 3

Fig. 2. Laterally connected network for APEX.
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2.3. The c -APEX learning rule

A PCA transform is such that the transformed scalar

random processes in z�t� �W T�t�x�t� are characterized by

maximum variances; furthermore, any PCA vector must be

orthogonal with respect to each other and possess unitary

norm so that WTW � Ip:

In contrast to the heuristic derivation of Kung±Diaman-

taras, in Ref. [11] a learning algorithm based on criterion

optimization was presented; in fact, the above targets can be

thought of as separate objectives to be attained by means of

same Rubner±Tavan's laterally connected neural network,

and by the stochastic gradient optimization of the criterion:

N�W;L� �def
TR�E�yyT��1 TR�WTW 2 Im� ~L�

1 TR��LTL� ~C�: �12�
Here ~L is a diagonal matrix of Lagrange multipliers

whose optimal expression can be found by solving

W T�2N�=�2W� � 0 for ~L; and operator TR[ ] returns the

trace of the matrix contained within.

In Ref. [11] we proposed to adapt the direct-connection

weight-matrix W, in order to only maximize the trans-

formed data variance measured by Eq. (12), by means of

the following learning rule:

W�t 1 1� � hX�t� ~Y�t�1 W�t��Im 2 h ~Y�t� ~Z�t��; �13�

~Z �def
diag�z1; z2;¼; zm�; �14�

and to adapt the lateral-connection weight-matrix L, in

order to only make the components of the response vector

y uncorrelated, i.e. to minimize their correlation measured

by the same criterion (12), according to the following rule:

L�t 1 1� � 2hrSUT�Y�t� ~Y�t��1 L�t��Im 2 h ~C�t��; �15�

~C �def
diag�c1;c2;¼cm�; �16�

where the c k are arbitrary functions that at least guarantee

the stability of the network, r is a magnifying factor, and h
is a positive learning step-size.

A learning rule with structures (13)±(15) with a generic c
function is termed c -APEX. It is worth noticing that the y2-

APEX (i.e. c�y� � y 2� is very similar to, but is not the same

algorithm as, the original APEX; in Refs. [9±11] we also

discussed the choices ck�yk� � 0 (0-APEX) and ck�yk� �
uyku (uyu 2 APEX).

In this case too, it is easy to change the parallel version

into the sequential one. To this aim let us de®ne the follow-

ing network quantities:

~yi�t� � ~W
T
i x�t�; �17�

zi�t� � wT
i �t�x�t�; and yi�t� � zi�t� � lT

i �t�~yi�t�: �18�
Then weights updating equations read:

wi�t 1 1� � hyi�t�x�t�1 wi�t��1 2 hyi�t�zi�t��; �19�

li�t 1 1� � hryi�t�~yi�t�1 li�t��1 2 hc i�t��: �20�
The involved constant parameters have the same meaning as

in the parallel version.

The c -APEX as well as APEX suffer from the problem of

learning step-size selection: it has to be chosen heuristically

or on the basis of the prior knowledge of eigenvalues, which

is rather impractical. APEX also comes with a step-size

learning theory, which easily results in an unstable algo-

rithm.

2.4. The autoencoder network and SAMH rule

Abbas and Fahmy proposed in Ref. [1] an algorithm

based on Oja's rule, the SAMH (successive application of

modi®ed Hebbian learning rule); the employed neural

network architecture is shown in Fig. 3; in neural networks

literature it is normally referred to as autoencoder.

The structure is strictly sequential: ®rst the 1st neuron

with output y1 is trained with weight vector w1 �
�w11;w21;¼;wp1�T until convergence, then the second

neuron is trained until convergence, and so on. Every time

a neuron starts learning, it computes a new input data-

sequence by subtracting the reconstructed data-obtained

by using the previously computed eigenvectors-from the

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±0004

Fig. 3. Autoencoder network with the ªde¯ationº mechanism for the

SAMH.
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original data-sequence. This operation is called by some

authors ªde¯ationº and allows to achieve the orthogonality

among the eigenvectors.

It is worth noticing that in the two-layer structure of the

autoencoder, only the ®rst layer gets trained, as the weight

matrix Ŵ [ Rm£p equals WT. By de®ning the new input

vector ei�t� [ Rp as the result of de¯ation:

ei�t� �def
x�t�2

Xi 2 1

k�1

yk�t�wk; i $ 2; �21�

e1�t� �def
x�t�; �22�

the input±output relationship can be written as:

yi�t� � wT
i �t�ei�t�; �23�

and the learning equation reads:

wi�t 1 1� � wi�t�1 h�yi�t�ei�t�2 y2
i �t�wi�t��: �24�

It is important to remark that Abbas±Fahmi's learning

algorithm consists in a sequential utilization of Oja's rule

for each neuron; thus the ith neuron sees the input signal

de¯ated from the previous i 2 1 principal components, so

that the ith principal component becomes the ®rst principal

component of the de¯ated signal. However, as in the GHA

the Gram±Schmidt orthogonalization procedure is

employed, which makes the reliable extraction of all

components dif®cult.

2.5. The autoencoder network and RLS-PCA rule

Bannour and Azimi-Sadjadi introduced in Ref. [3] a PCA

algorithm based on the RLS approach. It uses a sequential

structure too, so only one neuron works at each step.

The neural network's structure is shown in Fig. 4. It is

similar to the architecture utilized for SAMH (see Fig. 3),

except that now the new input sequence ei�t�; de®ned above,

is not used for the ªde¯ationº but only in the updating

operations. It can be better seen in the following equations

that describe network's learning:

yi�t� � wT
i �t�x�t�; �25�

Ki�t� �
P

i
�t�yi�t�

�1 1 y2
1�t�Pi�t��

; �26�

wi�t 1 1� � wi�t�1 Ki�t��ei�t�2 yi�t�wi�t��; �27�

Pi�t 1 1� � �1 2 Ki�t�yi�t��Pi�t�; �28�
where Kalman gain Ki plays the role of the learning step-

size h and Pi comes from the inverse of the covariance of

the ith neuron's output. The value of Pi�0�; for each neuron,

is set, according to Ref. [3], to 0.5.

2.6. The cascade neural network and CRLS rule

In Ref. [5] Cichocki et al. proposed a neural approach to

PCA that follows the SAMH and RLS-PCA ones, combin-

ing their advantages. The CRLS relies on an inherently

sequential neural structure (Fig. 5), which is formally iden-

tical to the SAMH one (Fig. 3). In fact, while in SAMH the

error signal is obtained by subtracting the data partially

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±000 5

Fig. 4. Network with the ªde¯ationº mechanism used in the RLS-PCA.

Fig. 5. Cascade neural network with the ªde¯ationº mechanism for the CRLS.
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reconstructed by means of previously extracted eigenvec-

tors from the original data-sequence, in the CRLS the

subtraction is between the previous error and the data recon-

structed using only the last generated eigenvector (for the

®rst neuron the error signal equals the original data stream).

It is clear how this ªde¯ationº procedure is analogous to

the one described about the SAMH algorithm. The input±

output relationship (23) holds for the neurons in the CRLS

network; also, two successive neurons in the cascade link by

the equations:

ei �def
ei21�t�2 yi21wi21; �29�

e1�t� �def
x�t�: �30�

The learning equations for the ith neuron read:

q�t� � q�t 2 1�1 y2
i �t�; �31�

wi�t 1 1� � wi�t�1
yi�t�
q�t� �ei�t�2 wi�t�yi�t��; �32�

where 1=q plays the role of h , and q�0� sets to the variance

of all the error sequences every time a new neuron starts

learning, according to Ref. [5].

3. Some implementation details

In order to perform a fair comparison among the

mentioned algorithms, we decided to utilize for all the algo-

rithms the sequential structure that, being natural for the

SAMH, RLS-PCA and CRLS, is not natural for the other

algorithms. However for the APEX, and thus for the c-

APEX algorithms, a sequential version exists (see Sections

2.2 and 2.3), even if their distinctive feature is the possibility

of a parallel extraction of a prede®ned number of principal

components. For the GHA, Sanger in Ref. [29] does not cite

this possibility explicitly; however, the extension to the

sequential case is quite straightforward (see, e.g. Bannour

and Azimi-Sadjadi [3] and Cichocki, Kasprzak and Skarbek

[5]). This decision followed from testing both the versions

of these algorithms and observing that the parallel version is

less ef®cient: in fact, even if each neuron starts to lean

immediately, in practice it begins correct convergence

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±0006

Fig. 6. Code structure for the implementation of the learning algorithms.
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leads to wasting much CPU time.

In order to implement the algorithms and to make the

neurons' learning sequential, we employed the code struc-

ture shown in Fig. 6. Note that it implies that only when all

the iDw i�t�i; computed for each pattern of any whole epoch,

satisfy the termination condition, the corresponding neuron

stops learning, while in Ref. [5] the stability of only one

wi�t� is suf®cient to terminate the learning phase of ith

neuron and to make successive neuron learning. This is

because when some patterns are similar it is highly probable

that a single wi�t� keeps almost constant, which does not

imply convergence.

For implementing the algorithms we used a neural

network with 64 inputs and a variable number of outputs.

The number of inputs comes from the 8 £ 8 blocks of the

image that are used as training samples, with the image

being scanned from left to right, from top to bottom (the

sample blocks do not overlap). Also, as iterations measure,

we de®ne an epoch as a complete block-by-block scanning

of the whole image. Note that in this way the number of

patterns associated to each epoch depends on the image size;

for instance, an 8 £ 8 block-by-block scanning of a 256 £
256 image corresponds to an epoch of 1024 learning

patterns, while an epoch for a 512 £ 512 image corresponds

to 4096 patterns; as a consequence, the number of epochs

necessary for an algorithm to converge also depends upon

the size of the image that the algorithm should compress.

We used images with 256 gray-levels (8 bits) and normal-

ized the input values from the discrete range 0±255 to the

interval [0, 1]; then we computed and subtracted the mean

value of each subimage, storing it for further decompression

operations.

In the compression operations we may introduce a vari-

able quantization allowing to assign a higher number of bits

to the ®rst components and a lower number to the last ones,

depending on the values of their variances.

As performance index, decompression signal-to-noise-

ratio (SNR) is employed. It is de®ned as:

SNR � 10 log10

XNrow

i�1

XNcol

j�1

I2
ij

XNrow

i�1

XNcol

j�1

�Iij 2 Îij�2
�dB�; �33�

where I is the original image, Î is the reconstructed one and

Nrow £ Ncol is the support size. About the interpretation of

numerical results, it is worth noting that values greater than

25±30 dB of SNR for an image are such that the recon-

structed versions may be visually indistinguishable one

from another; also, when about 64 principal components

are used to represent a 64-pixel block, clearly the SNR

reaches very high values (corresponding to very low

compression rates), provided that the weight-matrix is

orthogonal, regardless of the adherence of weight-vectors

to true eigenvectors.

4. Experimental results

In order to assess the performances of the considered

algorithms, in this section simulation results are presented

and discussed. In Section 4.1 some preliminary issues are

presented about the effect of compressed image coding by

variable quantization; Section 4.2 is devoted to numerical

performance assessment on different categories of pictures,

while in Section 4.3 the computational complexity of the

considered algorithms is evaluated; Section 4.4 presents a

discussion on the generalization ability of the networks

which allows compressing images by means of the network

`computed' over a prototype image; in Section 4.5 the use of

an algorithm allowing for principal subspace estimation and

the compression of colored images by PCA algorithms are

brie¯y addressed.

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±000 7

Fig. 7. Compression results, with and without variable quantization (8 outputs and a maximum of 40 epochs per component): (a) without variable quantization

(SNR � 28:39 dB; CR � 1 bpp); and (b) with variable quantization (SNR � 27:09 dB; CR � 0:625 bpp).
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4.1. Compressed image coding by variable quantization

In order to perform variable quantization based upon

Sangers' paper [29] we compute the log of the variances

of the principal components and linearly normalize the

results between 4 and 8 as we observed that associating a

number of bits ranging from a maximum of 8 for the ®rst

principal component to a minimum of 4 for the last one

allows keeping almost non-degraded the SNR with respect

to the constant quantization case (i.e 8 bits for each compo-

nent). An index which in general measures the achieved

compression ratio (CR) can be written as:

CR �

Xm
i�1

bi

64
bits per pixel �bpp�; �34�

where bi is the number of bits associated to the ith compo-

nent. CR represents the average number of bits required for

coding each pixel. For a meaningful comparison, it is worth

noting that the uncompressed images require 8 bits per pixel

to be represented, thus they have CR � 8 bpp: This is thus

the reference value: smaller values of CR denote better

compression rates.

An example is displayed in Fig. 7 where the result of

compression of the image ªchildº (see Fig. 8a for the origi-

nal image) with and without variable quantization is illu-

strated. As we can note, there is only about 1 dB of

degradation in the case of variable quantization at the

expense of a light windowing effect.

We mention that recently a merged compression/quanti-

zation procedure has been proposed [2], which adapts the

quantization algorithm to the image and makes this opera-

tion better suited to available data.

4.2. Numerical performances evaluation

To evaluate the performances of the PCA algorithms, we

consider both the convergence speed, measured as the

number of epochs necessary for each neuron to extract the

corresponding component, and the quantitative difference

between the original and reconstructed images, showing

the SNR values obtained by running the different algo-

rithms.

About the kinds of image we used for testing the cited

principal component networks, we oriented our simulations

to: (1) natural scenes, (2) textures, (3) artifacts (printed text),

and (4) high-frequency images. For each category we

repeated the same simulations in order to be able to form

an opinion about the best performing algorithm for each

class. Finally, the obtained results, for each algorithm,

have been averaged over the four categories.

Unless otherwise indicated, the maximum number of

epochs per component equals 40, the learning rate (if any)

is 0.01, and the threshold e was set to 2 £ 1024, which

ensures the maximum attainable value of the SNR.

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±0008

Fig. 8. Reference images: (a) ªChildº �256 £ 256�; and (b) ªLennaº �512 £ 512�:

Table 1

Comparison of the algorithm performances: number of epochs necessary

for the ®rst 8 neurons to converge (maximum limit ®xed to 40), image:

ªLennaº. SNR ratio achieved upon reconstruction operated on the basis of

the ®rst 8 components

Algorithm No. of PCs SNR (dB)

1 2 3 4 5 6 7 8

GHA 40 40 40 40 40 40 40 40 25.82

APEX 40 40 40 40 40 40 40 40 5.70

0-APEX 40 40 40 40 40 40 40 40 25.87

uyu-APEX 40 40 40 40 40 40 40 40 25.78

y2-APEX 40 40 40 40 40 40 40 40 25.89

SAMH 40 40 40 40 40 40 40 40 25.91

RLS-PCA 2 11 13 15 19 29 40 40 25.94

CRLS 2 11 13 15 19 29 40 40 25.92

Fig. 9. Image sequence obtained with CRLS algorithm: (a) 1PC, SNR � 18:09 dB; CR � 0:125 bpp; (b) 2PCs, SNR � 20:48 dB; CR � 0:25 bpp; (c) 3PCs,

SNR � 21:89 dB; CR � 0:375 bpp; (d) 4PCs, SNR � 23:01 dB; CR � 0:05 bpp; (e) 5PCs, SNR � 24:12 dB; CR � 0:625 bpp; (f) 6PCs, SNR � 24:79 dB;

CR � 0:75 bpp; (g) 7PCs, SNR � 25:32 dB; CR � 0:875 bpp; and (h) 8PCs, SNR � 25:94 dB; CR � 1 bpp:

Image and Vision Computing ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 26-01-2001 16:32 IV6027 GL Alden



UNCORRECTED P
ROOF

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±000 9

Image and Vision Computing ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 26-01-2001 16:32 IV6027 GL Alden



UNCORRECTED P
ROOF

4.2.1. Performances on natural scenes

For these tests the 512 £ 512 ªLennaº image and

256 £ 256 ªChildº image were used; they are shown in

Fig. 8.

In the ®rst simulation, we set the number of outputs to

m � 8; the results are shown in Table 1. The best algorithms

in this test resulted to be the CRLS and RLS-PCA, which

achieve a higher SNR value with a smaller number of

epochs. The other algorithms are not able to converge

quickly (i.e. within the 40 epochs allowed for each neuron).

A visual example of the quality of the reconstructed

images, obtainable as the number of extracted principal

component increases, is reported in Fig. 9; these results

have been obtained by running the CRLS network.

Results show that the algorithms are practically equiva-

lent when a few principal components are extracted. Thus, a

more revealing comparison is the extraction of all the 64

components. In Fig. 10 we can see the results for the image

ªChildº, and in Fig. 11 for ªLennaº. The RLS-PCA and

CRLS exhibit better performances.

4.2.2. Performances on textures

Fig. 13 reports the performances of the eight considered

PCA algorithms on the texture shown in Fig. 12. Also, Fig.

15 reports the performances of the PCA algorithms on the

texture shown in Fig. 14.

For both textured images the CRLS, RLS-PCA and GHA

exhibit a good behavior, the algorithms belonging to the c -

APEX class perform rather similarly among them, while old

APEX and SAMH show a greater dif®culty to extract the

principal components.

4.2.3. Performances on a printed text

Fig. 17 reports the performances of the PCA algorithms

on the printed text image shown in Fig. 16.

In this case the GHA algorithm performs the best with

49 dB of achieved SNR, the RLS algorithm follows with

47.5 dB, and the CRLS with 46.8 dB; also, 0-APEX shows a

good performance with 40.5 dB. It is worth noticing that in

spite of the gaps among the SNR values achieved by the

algorithms, at these very high signal-to-noise ratios, visually

the reconstructed images look similar, thus no practical

differences exist among the behavior of the four cited best

performing algorithms. In this case only the last four prin-

cipal components make the difference among the networks.

4.2.4. Performances on high-frequency images

An interesting experiment concerns high-frequency

image compression by the principal component networks.

The image used for test is a picture of a polyester slab taken

from the Carnegie-Mellon University database, depicted in

Fig. 18.

In order to con®rm it has very high frequency compo-

nents, in Fig. 19 the amplitude spectrum of the image was
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Fig. 10. SNR value versus the number of extracted components (image: ªChildº). Legend: CRLS� point, RLS� dashed, GHA� dot-dashed, y2-APEX�
dotted, 0-APEX� solid, uyu-APEX� solid-point, SAMH� solid- £ -mark, APEX� solid-circle.
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reported as obtained by applying the bidimensional discrete

Fourier transform (DFT). In the ®gure the normalized

frequencies v x and v y range in [2p, 1p], where the central

value 0 corresponds to low frequency and edge values ^p
correspond to high frequency. When compared to the spec-

trum of natural image ªLennaº, the ªPolyesterº clearly exhi-

bits a spreader spectrum which has strong components in the

boundary of spectra support.

In Fig. 20, the performances of the PCA algorithms on the

high-frequency image ªPolyesterº are illustrated. As the

characteristics of the high-frequency image are very differ-

ent from those pertaining to, e.g. natural scenes, it is intui-

tive to expect different numerical performances. Particularly

it seems that the algorithms all behave poorly, as also

con®rmed by results reported in Table 2; the low values

of achieved SNR's with eight components extracted is parti-

cularly worth noting.

4.2.5. Average numerical performances

The results of numerical simulations shown in the preced-

ing sections, related to four categories of images, reveal that

the performances of the principal component algorithms

considered in the present comparison depend upon the char-

acteristics of the images to be compressed; also, they allow

us forming an opinion about the best performing one for

each category.

In this section we aim at presenting a global result about

numerical performances, by showing the SNR curves

attained by each algorithm averaged over the four cate-

gories. With reference to the previous simulations, we

chosen the following images to represent the four cate-

gories: ªChildº, ªMetalº, ªTextº and ªPolyesterº. Fig. 21

shows the obtained results.

The CRLS algorithm and the RLS-PCA de®nitely exhibit

the best numerical performances in our simulations, grant-

ing relatively higher values of SNR ratios with respect to the

other algorithms, which correspond to absolutely excellent

results. It should however be remarked that when only few

principal components are extracted, the cited algorithms

perform rather similarly, while the difference among their

behavior clearly emerges when several components are

looked upon.

4.3. Computational complexity evaluation

The computational complexity of the considered algo-

rithms is evaluated by measuring the number of ¯oating

point operations (¯ops) required during code running.

The results have been reported in Table 3 and are

referred to the image ªChildº and m � 4 extracted

components. As the epochs for each component (for

each algorithm) have been set to 10 for a fair compar-

ison, a total of 40 learning epochs were run. It is worth

noting that having kept constant m and the number of

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±000 11

0 10 20 30 40 50 60
5

10

15

20

25

30

35

40

45

No. of extracted components

S
N

R
[d

B
]

Fig. 11. SNR value versus the number of extracted components (image: ªLennaº). Legend: CRLS� point, RLS� dashed, GHA� dot-dashed, y2-APEX�
dotted, 0-APEX� solid, uyu-APEX� solid-point, SAMH� solid- £ -mark, APEX� solid-circle.
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Fig. 12. Sample of a texture (image ªCharmsº).
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Fig. 13. SNR value versus the number of extracted components (image: ªCharmsº). Legend: CRLS� point, RLS� dashed, GHA� dot-dashed, y2-APEX�
dotted, 0-APEX� solid, uyu-APEX� solid-point, SAMH� solid- £ -mark, APEX� solid-circle.
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iterations, the reported results are actually independent

of the images' size. The table shows the total number of

required ¯ops, and the average number of ¯ops per

iteration; here the number of iterations is de®ned, refer-

ring to the code structure of Fig. 6, as the total number

of times that the operations explained in the most inner

cycle are executed, that is No. of outputs £ No. of

epochs £ No. of patterns. Table 3 also shows the

computation times2 required for the algorithms to run

on a common platform (450 MHz clock, 64 Mb RAM).

As con®rmed by simulation results, the SAMH, RLS-

PCA and CRLS have a lighter structure with respect to

the other algorithms; this can be explained by recognizing

that in each cycle the GHA, APEX and c -APEX use the

matrix ~W (whose size is 64 £ �i 2 1� for the ith neuron),

therefore as the index of the currently extracted component

grows, the computational complexity grows, too. The

advantage of the CRLS with respect to SAMH and RLS-

PCA is given by the use of the ªde¯ationº procedure, i.e. in

the CRLS the current neuron's weight-vector wi only is

used. About computation times, it is worth noting that the

reported numbers account for several concurring effects as

pure computation and memory allocation/de-allocation.

Another discriminating element in the comparison is the

storage requirement of each algorithm, i.e. the required
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Fig. 15. SNR value versus the number of extracted components (image: ªMetalº). Legend: CRLS� point, RLS� dashed, GHA� dot-dashed, y2-APEX�
dotted, 0-APEX� solid, uyu-APEX� solid-point, SAMH� solid- £ -mark, APEX� solid-circle.

2 They refer to an interpreted programming language, and were found to

have about two times the magnitude order of the corresponding versions

implemented with a compiled programming language.

Fig. 14. Sample of a texture (image ªMetalº).
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memory capacity for storing the ¯oating point variables

involved in the computer implementation of the neural

topologies along with the learning procedures. Estimates

of the memory requirements are given in Table 4. Once

again, the CRLS algorithm exhibits the best features.

4.4. On generalization ability

An important feature of neural networks is the general-

ization ability, which is generally referred to as the property

of a network to react correctly to input patterns never seen

before, i.e. to patterns that do not belong to the training set.

In fact, generalization is a good measure of a learnt

network's suitability to solve a problem, because it reveals

the degree of adherence, attained by the network, to the

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±00014

Fig. 16. Sample of a printed text (image ªTextº).

Fig. 18. A real-world image (picture of a polyester slab) with high-

frequency components (image: ªPolyesterº).
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Fig. 17. SNR value versus the number of extracted components (image: ªTextº). Legend: CRLS� point, RLS� dashed, GHA� dot-dashed, y2-APEX�
dotted, 0-APEX� solid, uyu-APEX� solid-point, SAMH� solid- £ -mark, APEX� solid-circle.
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physical phenomena underlying the data [4,32]. Generaliza-

tion is also closely related to the concept of interpolation by

a learnt model, built up from samples of the input space,

which allows to treat properly the data situated in a part of

the input space where there were learning data.

In the context of the ®rst experiments on image compres-

sion by principal component neural networks, it has been

observed experimentally that different images belonging to

the same category (e.g. natural scenes) give raise to PCA

networks with very similar set of weights [29]. This

suggests that the linear PCA model is strongly plausible

and representative of some categories of pictures, thus the

generalization ability would hold for them, naturally provid-

ing a fast compression technique. In fact, by exploiting this

property, we can think to train a network on a ªprototypeº

image and to use the obtained network to compress a picture

of the same kind.

As demonstrated by the examples in Fig. 22, the results are

excellent. The advantage is the high speed of this operation,

i.e. the compression phase is very fast with respect to

network re-learning. As an interesting result, the SNR of

the image ªChildº is higher than the SNR of image

ªLennaº. This phenomenon may be explained by observing

that the image ªLennaº is more complicated and exhibits

much more details than ªChildº does, thus the network

trained on the ®rst one contains much more information

about natural scenes, and is therefore a good candidate to

represent a prototype for that class.

Another interesting example is shown in Fig. 23,

where the results of compression/decompression are

illustrated for two environmental images and an arti®-

cial one (a printed text) coming from the Waterloo

University repository; these results have been obtained

by the CRLS principal component network trained on

the ªLennaº image. The visual result for the ®rst two

pictures is good; however, the reported SNR values

reveal that the quality of reconstructed images degrades

with respect to the original ones; about the printed text,

the learnt network clearly does not work properly on it,

con®rming that the generalization performance of a

learnt principal component network depends on the

category that the learning data belong to.

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±000 15

Fig. 19. The two-dimensional spectra of ªPolyesterº image and of ªLennaº image for comparison, obtained by the use of bidimensional DFT.
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Fig. 20. SNR value versus the number of extracted components (image: ªPolyesterº). Legend: CRLS� point, RLS� dashed, GHA� dot-dashed, y2-APEX�
dotted, 0-APEX� solid, uyu-APEX� solid-point, SAMH� solid- £ -mark, APEX� solid-circle.
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Fig. 21. Average SNR value versus the number of extracted components (four selected images). Legend: CRLS� point, RLS� dashed, GHA� dot-dashed,

y2-APEX� dotted, 0-APEX� solid, uyu-APEX� solid-point, SAMH� solid- £ -mark, APEX� solid-circle.
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Fig. 22. Example of the generalization property (algorithm: CRLS, 8 outputs and a maximum of 40 epochs per component): (a) image ªLennaº �SNR �
25:94 dB�; (b) image ªChildº �SNR � 28:36 dB�; (c) image ªLennaº compressed with the network computed in (b) �SNR � 25:07 dB�; and (d) image ªChildº

compressed with the network computed in (a) �SNR � 27:77 dB�:

Table 2

Comparison of the algorithm performances: number of epochs necessary to

the ®rst 8 neurons to converge (maximum limit ®xed to 40), image: ªPolye-

sterº. SNR ratio achieved upon reconstruction operated on the basis of the

®rst 8 components

Algorithm No. of PCs SNR (dB)

1 2 3 4 5 6 7 8

GHA 40 40 40 40 40 40 40 40 12.9163

APEX 40 40 40 40 40 40 40 40 12.9045

0-APEX 40 40 40 40 40 40 40 40 12.9154

uyu-APEX 40 40 40 40 40 40 40 40 12.9147

y2-APEX 40 40 40 40 40 40 40 40 12.9093

SAMH 40 40 40 40 40 40 40 40 12.9112

RLS-PCA 24 21 22 25 30 29 24 25 12.8948

CRLS 23 33 28 28 30 25 28 25 12.8921

Table 3

Complexity comparison: total ¯ops and average ¯ops per iteration, and

computation times on a 256 £ 256 image, 4 outputs. Platform: 450 MHz/

96 Mb machine

Algorithm Flops Ave. ¯ops/iter. Time (for 40 epochs) (s)

GHA 43,950,914 1073 15.49

APEX 29,706,240 725 16.86

0-APEX 29,748,004 726 20.32

uyu-APEX 29,746,927 726 21.20

y2-APEX 29,790,633 727 20.77

SAMH 20,226,882 494 11.97

RLS-PCA 20,513,602 501 15.76

CRLS 17,686,854 432 13.19
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4.5. Further experimental results

Computer simulations on image compression have been

performed by implementing Oja's principal subspace rule

[24] too. This algorithm is not able to extract directly the

selected eigenvectors of data covariance matrix, but only a

linear combination of them, which is a rotation; thus it

extracts vectors spanning the principal subspace of input

space. Moreover, it has been observed experimentally (see

for instance Ref. [31]) that such algorithm exhibits a kind of

whitening effect, that is, the eigenvector rotation makes the

extracted components have similar variance. As a conse-

quence, the components are not ordered at the network's

outputs, thus the coding scheme cannot be employed;

furthermore, the extracted components all contain a fraction

of information about the compressed image and none of

them can be neglected.

As another interesting matter, in order to extend the

S. Costa, S. Fiori / Image and Vision Computing 00 (2001) 000±00018

Fig. 23. Example of generalization (algorithm: CRLS, 8 outputs and a maximum of 40 epochs per component, trained on ªLennaº image): (a) original/

reconstructed image ªGoldhillº �SNR � 23:22 dB�; (b) original/reconstructed image ªMountainº �SNR � 14:57 dB�; (c) original/reconstructed image ªTextº

�SNR � 11:31 dB�:
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considered algorithms to colored image compression, it is

necessary to take into account that colors are coded and

subdivided in gray-level subimages, which can be

compressed and decompressed separately. Perhaps, the

most known coding technique is the RGB one; it is an addi-

tive model in that any color is obtained by summing to black

different degrees of red, green and blue lights. A subtractive

model is the CMYK one, which starting from white gener-

ates the different colors by subtracting tones of cyan,

magenta, yellow and black. Other well-known models are

the HSB (hue, saturation, brightness), HLS, YIQ and so

forth. In our experiments we employed the RGB and HSB

coding subdivision techniques and compared the obtainable

compression results. Best results have been obtained by

operating on RGB subimages; likely, this may be explained

by observing that the R, G, B subimages have relatively

smooth shapes (that are to be preferred when using PCA

techniques, cf. experiments on high-frequency images) in

opposition to subchannel H, which is responsible for the

worst results connected to the use of HSB coding.

5. Conclusions

The aim of this paper was to present recent developments

in image compression by principal component neural

networks. The main results can be summarized as follows:

² among the considered algorithms the best results about

image quality compression/decompression have been

obtained with the CRLS algorithm;

² extracting up to eight principal components, the consid-

ered algorithms behave similarly about the quality of

compression and bit-per-pixel rate; however, the

SAMH, RLS-PCA and CRLS exhibit the lowest compu-

tational complexity;

² by exploiting principal components ordering, automati-

cally provided by the sequential extraction, compressed

image coding can be performed by optimal bit allocation;

the variable quantization implies small SNR degradation

at the expense of a light windowing effect;

² by exploiting the network's generalization ability fast

image compression can be performed by training a

network on prototype natural images corresponding to

the category that the image to be compressed belong to,

in order to obtain the best performance.
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