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ABSTRACT

This work presents a systematic and statistical approach to evaluate and predict the properties

of random discontinuous natural fiber reinforced composites. Different composites based on

polypropylene and reinforced with natural fibers were produced and their mechanical

properties are measured together with the distribution of the fiber size and the fiber diameter.

The values obtained were related to the theoretical predictions, using a combination of the

Griffith theory for the effective properties of the natural fibers and the Halpin-Tsai equation

for the elastic modulus of the composites. The relationships between experimental results and

theoretical predictions were statistically analyzed using a probability density function

estimation approach based on neural networks. The results obtained show a more accurate

expected value with respect to the traditional statistical function estimation approach. In order

to point out the particular features of natural fibers, the same proposed method is also applied

to PP-glass fiber composites.

KEYWORDS: natural fiber composites, mechanical properties, micro-mechanic, mechanical
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INTRODUCTION

Short conventional fibers (glass, aramid, carbon, etc) have been extensively used over the last

decades as reinforcements of thermoplastic polymeric matrices. They are incorporated into

plastics with the main objective of improving the mechanical properties of the polymer

reducing the cost of the final products1-3 with respect to long fiber composites. The growing

interest in using natural vegetable fibers as a reinforcement of polymeric based composites is

mainly due to their renewable origin, relative high specific strength and modulus4, light

weight and low price. Recent developments in natural fibers5-13 such as jute, sisal, coir, flax,

banana, etc, have shown that it is possible to obtain well performing materials, using

environment friendly reinforcements. The mechanical properties of natural fiber-reinforced

composites can, in fact, be further improved by chemically promoting a good adhesion

between the matrix and the fiber. Other advantages of utilizing natural fibers are related to

their cycle of production that is economical and their ease of processing which demands

minor requirements in equipment and safer handling and working conditions with respect to

glass fibers. In any case, the most interesting feature coming from the employment of natural

fibers is the extremely favorable environmental impact, due to the fact that natural fibers are

produced from a renewable source and are biodegradable. Furthermore, natural fiber

composites can be easily recycled or burned allowing clean energy recovery and avoiding

damping at the end of their life cycle. Therefore, lignocellulosic natural fibers represent an

interesting alternative as substitutes for traditional synthetic fibers14 in composite materials.

On the other hand, low thermal stability, high moisture uptake, and limited fiber lengths,

represent some of the disadvantage related to the utilization of natural fibers composites.

Another noticeable drawback of these fibers lays in their intrinsic variability. The behavior

and the properties of natural fibers depend, in fact, on many factors such as harvest period,

weather variability, and quality of soil and climate of the specific geographic location15 as
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well as preconditioning16-19. The variability of the properties of natural fibers is so high, that it

can also be observed in fibers belonging to the same plant. Moreover, it has been shown that

fibers coming from the plant stems have different properties with respect to those taken from

the leaves20.

In contrast with synthetic fibers, whose properties can be easily and univocally determined,

natural fibers are characterized by a large dispersion of their characteristics. Such features

make it necessary to utilize a more systematic statistical approach to define their properties

and those of their relative composites.

In order to describe the characteristics of natural fiber reinforced composites in the present

work, the use of statistical representations based on probability density functions of the

quantities of interest is proposed. It is possible to relate the mechanical performances of the

composites to the properties of their constituents with this method. In particular, the modulus

of the composites studied can be analytically correlated to the geometrical and mechanical

characteristics of the fibers and to the mechanical properties of the polypropylene matrix

using the Halpin-Tsai equations21-22. On the other hand, the variation of the elastic modulus

and the tensile strength of untreated natural fibers with the diameter size, can be predicted

using the model proposed by Griffith23. Then, the statistical approach presented here utilizes

the distribution of the geometric properties of the fibers measured over a post-processed

composite to obtain a statistical distribution of the mechanical response of the composite

through the non-linear equations arising from the combination of the two models previously

reported. The true distribution functions are explicitly estimated by the help of semi-

parametric algorithms, drawn from the neural network literature. These functional estimates

allow easy visualization of results and make it possible to perform a more accurate

interpolation from missing data.
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Estimations of the Probability Density Functions

The probability density function (PDF) of a random variable describes the distribution of its

possible values (or determinations) within its range in terms of the expected number of times

that a single value will fall in a very small numerical interval when observing the variable.

PDFs are frequently used in physics and chemistry to describe complex phenomena that

cannot be characterized in a deterministic way (see e.g. Johnson and Levy24, Zucker and

Schulz25, Coppens26, and Kuhs27). A typical problem in the PDF theory is the approximation

of the probability density function describing a physical phenomenon by sample analysis from

incomplete data, which may be regarded as a constrained functional approximation problem28.

It concerns the estimation of the PDF of a signal when some particular features of the true

PDF are observed (measured) or signal samples are obtained through measures. Several

techniques are available in scientific literature to solve this problem and they may be

classified mainly in parametric, non-parametric and semi-parametric techniques. The

parametric techniques assume a specific functional form for the density model that contains a

number of parameters; such parameters are optimized by fitting the model to the available

data. The main drawback of this approach is that the chosen parametric function might not be

suitable to provide a good representation of the density. In the non-parametric techniques, the

functional form of the probabilistic model is not specified in advance, but is only dependant

on the data. The main disadvantage of non-parametric approaches is that the complexity of

the model grows with the number of available observations, which cannot be kept too small

because the estimation ability would degrade. In order to combine the advantages of

parametric and non-parametric methods, semi-parametric ones have been developed, which

are not restricted to specific functional forms and the size of the model only grows with the

complexity of data-space structure, not simply with the amount of available data. Classical

semi-parametric models for PDFs are given by artificial neural networks29, which possess the



6

necessary model flexibility and learning ability to match the available data. In the present

work we utilize a neural algorithm for PDF estimation from incomplete data based on

unsupervised information-theoretic neural structures, known as adaptive-activation function

neurons30,31 (FAN), which proved useful in asymmetric probability density function

approximation in the presence of little data.

The Griffith and Halpin-Tsai Models

The mechanical properties of fibers as a function of their diameter were studied on metal and

alloy wires by Karmarsh32 in the early 1800s and revised by Griffith23. These studies brought

the following empirical expression:

f
ff d

B
AdE +=)( (1)

where )( ff dE  is the analyzed property, A and B are constants and fd  is the fiber diameter.

Although, Griffith theory has been mainly applied to the fiber tensile strength following the

simple observation that thinner fibers contain less strength reducing flaws, the experimental

observations indicate that also the elastic modulus has a similar dependence on the fiber

diameter.

Tsai and Pagano33 related the value of the modulus of randomly oriented discontinuous fiber

composites to the corresponding oriented moduli, according to the following equation which

arises as the result of an averaging process:

2211
8
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where E11 and E22 are the longitudinal and transverse modulus of a unidirectional

discontinuous fiber composite having the same volume fraction of fibers. Indeed, Equation 2

applies to randomly in plane oriented short fiber composites. However, it is very well known

that high shear rate flow conditions induces fiber orientation in injection molded show fiber
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composites with eventual presence of out of plane fibers. In our approach we have neglected

fiber orientation for simplicity and following experimental observation discussed in the

following section.

The values of the composite modulus E11 and E22 can be derived by using the Halpin-Tsai

model as follows:
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In these equations, the parameters ηL and ηT are given by:
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where: Em is the elastic modulus of the PP matrix;

Ef (df) is the elastic modulus of the fiber as a function of the fiber diameter,

lf  and df  are length and diameter of the fiber, respectively;

Vf  is the fiber volume fraction.

Glass and carbon fibers used in traditional composites are characterized by a very narrow

distribution of fiber diameter leading to a very low uncertainness in the values of the elastic

modulus of the fiber used in the model equations. However, natural fibers have a very broad

distribution of the diameter and the mechanical properties of the fibers are widely distributed

as a function of their dimensions. Then, we propose in this approach to introduce the variation

of the modulus with the diameter of the fiber, expressed using the Griffith model, in the above

equations. In this work, therefore, the values of the moduli of the composites are not directly
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calculated using a single geometrical parameter in the Halpin-Tsai equations, but the modal

values of statistical distribution are considered, which allow one to take into account the

different possible combinations of fiber aspect ratios and moduli.

EXPERIMENTAL PROCEDURE

Materials

Table 1 summarizes the characteristics of the raw materials utilized in this study. A

commercially available grade of isotactic polypropylene (iPP) (MFI: 2.9 dg/min at 190 °C and

5 Kg), kindly supplied by Solvay, under the trade name of Eltex-P HV-200, was used in this

work. Natural flax fibers provided by Finflax were used as a reinforcing agent. The common

flax plant, Linum Usitatissimum is a member of the Linaceae family, which is widely

distributed in Europe and other areas of the world. In this work, the variety Belinka, which

was cultivated in 1995 in Tyrnävä (Oulu, Finland) were used. Fibers are extracted from the

plant by biotechnical retting and dried at 55ºC. The length of a technical fiber is in the range

of 30 - 90 cm, but the fibers are previously cut to an average length of 1 cm, before

processing. A technical E-glass fiber, kindly supplied by Vetrotex, whose properties are also

reported in Table 1, was adopted for a comparative estimation in our study.

Fiber Characterization

The mechanical properties of the fibers were measured using the single-filament tensile test

carried out at room temperature on a Lloyd dynamometer mod. LR 30K, according to ASTM D

3379-75. The measurements were performed over fifty fiber samples having gage length of

approximately 30 mm at a crosshead speed of 1 mm/min. The data obtained on the mechanical

properties of the fiber were6 represented by a two-parameter Weibull34 equation, which

expresses the cumulative density function of the elastic modulus of the fibers as:



9

( )



















−−=

α

0

exp1
E

E
EF f

f (7)

where α  is a dimensionless shape parameter and 0E  is a location parameter.

Composite preparation

The compounds were prepared by means of hot-rolls, at a temperature of 180 ºC, which is

above the melting point of the thermoplastic matrix, for 30 minutes. The natural fibers were

previously cut to their initial length, about 10 mm in size, and dried in an oven at 70 ºC for 12

hours. Once the polymer was melted, the appropriate percentage of fibers was added to the

polymer. The same weight fraction of flax and glass fibers was used for simplicity, taking in

consideration that the objective of this study is not the comparison between natural fiber and

glass fiber composites but the development of advanced statistical tools to describe the

mechanical properties of these materials. Immediately after mixing, the material was extruded

into pellets, and then injection molded in a Sandretto Micro30 injection-molding machine to

obtain standardized dog-bone specimens. To avoid thermal degradation of the fibers, the

temperatures in the three main zones of the equipment were carefully selected at 182°C, 184°C

and 186 ºC, respectively. A mold temperature of 25 ºC and a specific injection pressure of 1700

bar were used. The time-intervals for the packing and cooling stages were 30 and 25 seconds,

respectively.

Composite characterization

Tensile tests were performed at room temperature on a Lloyd mod. LR 30K, according to

ASTM D638M standards. The tests were carried out at a cross-head speed of 5 mm/min and

the dimensions of test samples were 150 x 10 x 4 mm.
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In order to estimate the probability distribution function curves of the geometrical

characteristics of fibers in the composites, samples were melted in a Mettler FP-82 HT

automatic hot-stage thermal control to improve the visibility of the fibers included. Samples

were sandwiched between microscope cover glasses, melted and maintained at 200 ºC for the

test duration, the lengths and diameters of the fibers were measured using a Hund Weztlar

H600 optical polarizing microscope.

RESULTS AND DISCUSSIONS

Figure 1 illustrates the characteristic stress-strain curves obtained on the studied fibrous

reinforcements. As expected, the glass fibers presented higher values of elastic modulus and

tensile strength compared to flax fibers. The mechanical characteristics of the reinforcements,

in terms of elastic modulus and tensile strength, were measured and registered to be used in

the statistic analysis. In this sense, Figure 2 shows the ability of the Weibull model to describe

the mechanical behavior of both fibrous systems. The Weibull parameters α and E0 were

computed from the fitted curves and reported in Table 2. Again, the flax fibers manifest a

lower performance both in terms of mechanical properties and scattering of data. The

calculated location parameter, E0, which represents an average value of the measured

property, is lower for flax fibers. Furthermore the second Weibull parameter, the shape factor,

α, which is related to the dispersion of data, confirmed a wider scattering for flax fibers. As a

consequence, the glass fibers exhibit a more reliable behavior with elevated mechanical

performance.

Figure 3 shows the Young’s modulus as a function of the diameter size for flax fibers. It is

possible to observe that the modulus value is strongly dependent on diameter size and

furthermore, a wide range of diameters is present in the same bunch of fibers; such a variation

is a typical drawback of natural fibers. The real stresses on the flax fibers were calculated
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measuring the equivalent diameter from optical microscopy after each tensile test. The

variation of the modulus of the flax fiber with the diameter size shown in Figure 3 was

therefore modeled using the Griffith model which captures the inverse proportionality

between the Young modulus and fiber diameter clearly exhibited by the measured data. On

the other hand, with synthetic fibers, where the steep distribution of diameters allows the

utilization of an average value without introducing substantial errors, there was no need to use

the Griffith equation. In our study, only the Weibull location parameter was adopted to

characterize the mechanical performance of glass fibers.

Concerning the application of the Halpin-Tsai equations to the natural fiber composite, a more

accurate modeling of the composite mechanical properties can be obtained by using the

measured values of the geometrical dimensions and the predicted values of the respective

moduli. Such operation can be completed with the help of statistical distribution of the

properties of the composites, which, by taking into account the above expressed property

variations, is able to embody the rich information content of the measured data.

To accomplish this task we started with the estimation of the distribution of the geometrical

characteristics (the length “ fl ” and the diameter “ fd ”) based on unsupervised information-

theoretic neural structures, known as adaptive-activation function neurons. These structures

allow one to estimate the probability density function of every uni-variate random variable

from a reduced set of available measurements through an information-theoretic criterion. As

opposed to classical methods, such as the one relying on histogram computation, this

approach produces a smooth function that avoids granularity effects and that can also be used

to predict the values of the distribution, even in those range of values where no data was

observed. The effects of mastication during processing on the fiber dimensions for both flax

and glass fibers were monitored by means of a series of measurements of the geometrical

characteristics of post processed composites, which were used to build up their PDFs curves.
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Figures 4a-b show typical micrographs utilized for determining final fiber dimensions. A

more irregular shape of natural fillers with respect to the glass fibers is detected, which

confirms what was previously stated regarding the calculation of the diameters of the

reinforcements used. While only differences in length are observed in glass fibers composites,

a large variation of sizes in terms of both length and equivalent diameter characterize flax

fibers. Furthermore figure 4a and 4b, evidence a predominant random in plane orientation

supporting the use of Equation 2 as a first approximation of the composite properties.

The length and diameter distribution curves for the studied systems are shown in Figures 5a-

b. The use of the aforesaid PDFs estimation technique produces asymmetrical curved shapes

for both kinds of composites; the curves show that the most probable values (i.e. the curve

peak) of the distribution are shifted towards the lower values. Furthermore, it is possible to

notice that the natural fibers present a larger distribution of geometrical dimensions which is

due to their characteristic natural dispersion. The modal values obtained using the curves of

Figure 5 for the lengths and for the diameters of the studied fibers are reported in Table 3. It is

important to point out that the measured values of the diameters of natural fibers present a lot

of uncertainty because the displayed fiber diameters consist of a bundle of elementary fibers,

which of course may separate during testing. This fact makes a precise characterization of the

aspect ratio for natural fibers more difficult, justifying the use of a more accurate distribution

function.

Table 4 reports the matrix properties experimentally determined which were used in the

Halpin-Tsai equation for the determination of the composite moduli. The fiber-dependent

properties in the Halpin-Tsai equation were calculated in the following way: the modulus Ef,

as a function of the measured diameter and described well with the use of the Griffith model

(Figure 3), and the aspect ratio were determined for each observed fiber in the composite.

Each measured length and diameter produced a single value of the modulus of a hypothetical
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composite with a fiber volume fraction of Vf=0.13 for natural fibers and Vf=0.08 for glass

fibers, and having all the fibers the same measured geometrical dimensions. Each value of the

composite elastic modulus, obtained by applying the Halpin-Tsai model to every available

pair ( ff l,d ), was considered as an observed realization of the elastic modulus variable,

thought of as a random variable. With the help of the mentioned PDF estimation technique,

the statistical distribution of the elastic modulus values was then constructed.

Figure 6 illustrates the PDF curves obtained in this way for the Young’s modulus of the

studied composites. The most important feature of the PDF curves shown is their

asymmetrical shape that is more representative of the complex distributions of fiber

properties. Representing and predicting the behavior of short natural fiber reinforced

composites with such curves gives a more appropriate estimation of their mechanical features

because they embody the main fiber class characteristics. Furthermore, such a model better

represents the variability introduced by the mastication during processing.

However, it is possible to notice that, in all cases, the theoretical modal values of the

mechanical properties described are slightly greater in comparison to the measured

experimental values. These differences can be probably explained in terms of the assumptions

introduced in the approach. In particular, a deeper consideration of the following questions

should improve the accuracy of the approach applied here: the accurate determination of the

ηΤ parameter in the Halpin-Tsai equations, the possibility of utilizing the term ξ of the explicit

Halpin-Tsai equation as a fitting parameter, the inclusion of in plane and out of plane fiber

orientation. Furthermore, the deviation of the real composite features from the basic

assumptions of the theoretical approach, where a perfect adhesion at the fiber/matrix interface

and an absence of voids are required35, can also contribute to the slight disagreement between

experimental data and the model. Then, the lower experimental values highlight the poor
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adhesion between the polypropylene and the pair of fibers utilized in this work, also

confirmed by the SEM micrographs illustrated in Figure 7a-b.

A preliminary application of the model to the prediction of the tensile strength has produced

inconsistent results probably because the high anisotropy of natural fibers, which present strong

differences between the longitudinal and the transverse modulus. Furthermore the length of the

flax fibers was always shorter than the critical length, limiting in this way the reinforcing effect

of the fibers in the matrices. The different effect of the two kinds of reinforcement on the tensile

strength of the composite shown in Table 4 confirms what was stated above.

CONCLUSION

A systematic statistical approach to evaluate and predict the properties of random

discontinuous natural fiber reinforced composites was developed. The proposed model was

applied to different composites based on polypropylene matrix reinforced with natural fibers

and short glass fibers. The validity of the proposed statistical approach was verified

experimentally. It was observed that the theoretical elastic modulus predicted was close to the

experimental value. The relatively small differences between the expected values of the moduli

were attributable to imperfections, in terms of fiber/matrix adhesion and voids, in the analyzed

composites. This kind of modeling allows a better characterization of natural fiber composites

which mechanical properties are strongly affected by the broad distribution of fiber dimensions.

With the proposed method, in fact, one of the typical problems of the natural system, like the

dispersion of properties, can be approached utilizing a more accurate semi empirical

methodology, which can be useful in the design and the optimization of the processing of natural

fiber reinforced composites. Further investigations are in progress in order to extend the

proposed approach with other varieties of natural fibers.
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FIGURE CAPTIONS

Figure 1. Typical tensile curves for natural and glass fibers used in this research.

Figure 2. Weibull distributions for Young’s modulus of fibers used in this research.

Figure 3. Young’s modulus versus diameter plot for the flax fibers used in this research.

Figure 4. Images of flax (a) and glass (b) melted composites for determining fiber dimensions.

Figure 5.  Probability density function (PDF) curves of geometrical characteristics of fibers:

lengths (a) and diameters (b).

Figure 6. Theoretical PDF curves of Young’s modulus for natural and glass fibers composites.

Figure 7. Fracture surface of composites based on PP reinforced with flax (a) and glass (b)

fibers.
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TABLES

Table 1. Main characteristics of the materials utilized.

Materials PP Flax fiber Glass fiber

Manufactured SOLVAY FINFLAX VETROTEX

Designation Eltex-P HV-200 Retted flax fiber P 368

Density (g/cm3) 0.9 1.5 2.5

Initial length (mm) - 10 7

Diameter (µm) - 36-450 13
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Table 2. Mechanical parameters of the fibers used in this research.

Fiber Young’s modulus Tensile strength

Weibull model

parameters

Griffith model

parameters

Weibull model

parameters

Griffith model

parameters

αα

( )

E0

(MPa)

A

(MPa)

B

(MPa·mm)

αα

( )

E0

(MPa)

A

(MPa)

B

(MPa·mm)

Flax 1.59 48798 3023 2674 1.22 601 110 166.6

Glass 3.46 72706 - - 3.52 2093 - -
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Table 3. Geometrical characteristics of post-processed flax and glass fibers.

Fiber Modal length

(µm)

Modal diameter

(µm)

Flax 860 127

Glass 209 13
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Table 4. Theoretical and experimental mechanical properties of flax and glass fiber

composites

Composite material      Young’s modulus Tensile strength

Theoretical

(MPa)

Experimental

(MPa)

Experimental

(MPa)

PP - 1049 ± 72 30.0 ± 0.9

PP + 20% wt. flax fiber 1851 1502 ± 102 17.9 ± 1.4

PP + 20% wt. glass fiber 2727 2347 ± 75 52.4 ± 1.4
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J. Biagiotti et al., Figure 4a
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J. Biagiotti et al., Figure 4b
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J. Biagiotti et al., Figure 7a
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J. Biagiotti et al., Figure 7b


