PUBLISHED ON THE IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2D 1

Empirical Arithmetic Averaging over the Compact
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Abstract— The aim of the present research work is to inves-
tigate algorithms to compute empirical averages of finite g8 of
sample-points over the Stiefel manifold by extending the rton
of Pythagoras’ arithmetic averaging over the real line to a arved
manifold. The idea underlying the developed algorithms is hat
sample-points on the Stiefel manifold get mapped onto a taremt
space, where the average is taken, and then the average point
on the tangent space is brought back to the Stiefel manifoldvia
appropriate maps. Numerical experimental results are show and
commented on in order to illustrate the numerical behaviour of
the proposed procedure. The obtained numerical results cditm
that the developed algorithms converge steadily and in a few
iterations and that they are able to cope with relatively lage-
size problems.

Index Terms— Arithmetic averaging, Matrix manifolds, Em- Fig. 1. lllustration of the averaging algorithm on the Li®gp G proposed in
pirical averaging on matrix manifolds, Manifold retractio n, QR-  [21]. The dots ¢) denote sample elements and the box symiidldenotes the

decomposition, Polar decomposition, Cayley transform, Ctho- empirical average elemgnt. The procedure of computing_ enage element
graphic projection works as follows. The first step is to perform a left-tranistaté,, of each

samplez;, € G about the sought-for average element G so as to move
all translated samples to a neighbourhood of the identie]rllehte of the
Lie group G. The next step is, by means of a lifting maf ~, to map all
. INTRODUCTION samples onto the Lie algebgaand to compute their arithmetic mean denoted
EPRESENTATIONS involving structured matrices, suchy u. The final step consists in mapping the Lie-algebra elementto G
as orthogonal symplectic Toeplitz Hermitian—positiv@y exploiting a retraction mag’. and then to get the mean elemanby the
. . ! . T . "V lhverse left-translatiort; *.
matrices, special Euclidean matrices and unitary matrices
arise in signal processing. Known situations are principal
component analysis and independent component analysis by _ _ -
signal pre-whitening [15], radio interferometry [25] ang-0 However_, in the case that cc_mstralnt condm_ons —_suc_h as or-
tical system modelling [19]. Moreover, in statistical dat&1ogonality —are to be taken into account, arithmetic ayeg
processing, the data may appear under the form of rand§f€s not produce any sensible result (for example, thetresul
structured matrices (see, e.g., [16]). Random matrix ghesor Of entry-by-entry addition of two orthogonal matrices ist no
an important and active research area and it finds appligati®'thogonal, in general). Therefore, to compute statistios
in fields as diverse as physics, wireless communications a#RRCes of matrices, it is necessary to build up algorithras th
information theory. A useful statistical characterizatif a set take into account the geometric structure of the (generally
of structured matrices is their empirical mean, which appedurved) space that those matrices belong to. See, for eeampl
as an average matrix carrying on the same structure of # computation of themean shifton Riemannian matrix
data themselves. Averaging over a data-set is a good mettR@nifolds [38], the rich corpus of results about the space
to smooth-out data and to alleviate measurement errors d&fdgymmetric positive-definite matrices [10], [31] and, as a
random fluctuations. Occasionally, the median instead ef tBeneralization, the Bayesian analysis of the statistiGtiefel-
mean is made use of (see, e.g., [8]): Theorems of existencdsirices that represent subspaces in a Grassmann-manifold
medians on manifolds recently appeared in [3] with applic&tting [9], [34]. .
tions to Toeplitz Hermitian positive-definite matrices.[7] Fiori and Tanaka [21] presented a general-purpose avegagin
In the case of unconstrained data, such as, for examggorithm that works for matrix Lie groups and, in partiaula
in the case that the matrix-type data belong to the flat sp&é the space of special orthogonal matrices, that are squar
R™*", simple arithmetic averaging produces the desired resunatrices with mutually orthogonal unitary-norm columnsian
such that their determinant is positive (namely, they regmée
Copyright ©2012 IEEE. Personal use of this material is permitted. HO"‘high-dimensionaI rotations). A Lie group is an algebraic
ever, permission to use this material for any other purpasest be obtained . . . .
from the IEEE by sending a request to pubs-permissions @iege group endowed with a manifold structure compatible with
T. Kaneko and T. Tanaka are with the Department of Electdoal Electronic  itS algebraic structure. The method presented in [21] éteplo
Engineering, Tokyo University of Agriculture and Techngyo(TUAT), 2-24-  the relationship between a Lie group and its associated Lie
16, Nakacho, Koganei-shi, Tokyo 184-8588 (Japan). laeb d is ill di . Ith h th .
S. Fiori is with Dipartimento di Ingegneria dellInformamie, Universita &19€ ra_an is illustrated in Figure 1. Alt O.UQ there Is a
Politecnica delle Marche, Via Brecce Bianche, 1-60131 Awgltaly). connection between the method proposed in [21] and the
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notion of Riemannian or Karcher mean [29], the substantial TXSt(p, n)
difference is that the Riemannian mean is defined on the V

basis of a dispersion criterion that involves the Riemamnia K<

(or geodesic) distance between two points, while the method
proposed in [21] does not involve any metrics and is hence
more general, in this regard. Other methods have been hgcent
proposed in the literature to tackle the problem of average
computation, as, for example, the method based on stochasti
flow to compute averages on manifolds [4].

The method presented in [21] relies on a class of func-
tions, termed ‘lifting maps’, that map an element of the Lie
group to the Lie algebra and on a class of functions, termed
‘retraction maps’, that map an element of the Lie algebra
onto the Lie group. The problem @veraging on non-Lie-
group-type manifolds is substantially more difficbkkcause Fig. 2. lllustration of the notion of retraction mafx and of lifting map
the calculation of appropriate retraction (and especiaflithe (];)%ef?rf’igg; %fpggtﬁiﬁﬁgsrﬁq(gr”_")' The dashed-circle represents the domain
lifting) maps is a substantially more involved and less &dd
problem. Hence, averaging on non-Lie-group-type mangold
cannot be achieved by any trivial extension of the method ] ]
proposed in [21]. It could be tackled as a Riemannian-meginifold is defined by:
or Karcher-mean computation problem, but in some cases a St(p,n) X € RP | XTX = I} 1)
distance function on manifolds of interest may be unavéglab ’ nh
in closed form. In particular, the problem of averaging oa thwhere symboll,, denotes an x n identity matrix andn <
compact Stiefel manifold (the space of orthogonal recttargup, namely, the manifoldSt(p,n) is the space of the ‘tall-
matrices), which is not a Lie group, is worth analyzing begauskinny’ orthogonal matrices. The compact Stiefel manifold
a number of signal-processing applications require $izdls has dimensionpn — @ Its tangent space at a point
computation over the Stiefel manifold, such as data climger X € St(p, n) may be expressed as:

[13], image and video-based recognition [40], Bayesian fil- T T

tering [39] and manifold learning for expression analysis a TxSt(p,n) = {V ERTXTV VX = O} - @
human motion analysis [24]. The aim of the present researehch tangent space is a vector space of dimeq&i&n@
work is to extend the algorithm introduced in the paper [21] {ynder standard matrix addition and multiplication by a +eal
compute averages over the compact Stiefel manifold. Tree idgy|ued scalar.

behind the developed algorithms is that points on the Stiefe A retraction at a pointX € St(p,n) of a Stiefel manifold
manifold are mapped onto a tangent space where the averggg map Py : TxSt(p,n) — St(p,n) such that, for each
over mapped points is taken, and then the average point{gRgent spac&ySt(p,n), it holds that [11]:

the tangent space is brought back to the Stiefel manifold. Tol) The retractionPy is defined in some open ball about

summarize the method in a sentent® average of samples 0 € TxSt(p,n)

on the Stiefel manifold is computed by applying a retraction 2) It holds tha{tP;; 0) =X

to the arithmetic average of the lifted samples 3) It holds that 4 Py (tV)\ o v
dt t=0 ~ " °

Most of the research work described in this paper concerps

the individuation of appropriate retraction/lifting mafos the St(p,n). A map Pgl . St(p,n) — TxSt(p,n) such that

Stlefe_l mar_m‘old a_nd of efﬁaenf[ ways _to implement them, af"X(P)}l(Q)) — Q,for Q € St(p,n), is termediifting map.
explained in section Il. In particular, in the present reska  * ... . ) . . .
. . A lifting map is defined only locally and is not unique, in
work, a QR-decomposition based retraction map, a polar- . . s
general. The notions of retraction map and of lifting map are

decomposition-based retraction map, an orthographuatretrj"ustralte d in Figure 2.

tlr:; ?aaﬁoindvx;[mo tﬁgi)r/lZﬁ;:)a::r;;{g;mlggﬁse(;n%seusi%_(;?:ggu0 The compact Stiefel manifol®t(p,n) is a submanifold
bS, g 9 P of the Euclidean spac&®P*™. As such, a normal space

maps, are studied and tested numerically. The results efakev :
numerical tests are illustrated in the section Ill. Sectigh NX.St(p’n? may be associated to each poikit € St(p,n),
which is given by:

draws the conclusions.

retraction induces local coordinates on the manifold

NxSi(p.n) = {XS|ST =S RV (3)
Il. ARITHMETIC AVERAGING ALGORITHMS ON THE The special orthogonal group of matrices, denoted by
COMPACT STIEFEL MANIFOLD SO(p), is defined as:

The aim of this section is to build up arithmetic averaging def pxpl AT A _
algorithms on the Stiefel manifold based on the notion of SO(p) =G € RTPIGEG = I, det(G) = 1}, (4)
manifold retraction. In particular, the proposed method i is a Lie group under standard matrix multiplication and
based on a fast fixed-point algorithm. The compact Stieflversion, with the matrix/, being its identity element. Its
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associated Lie algebra is: T'x St (p, n)
so(p)={Q € V7|07 = -0}, 5) o tee
t i matr oV, =N v
namely, it is the set op x p skew-symmetric matrices. The / . o k=1 "k
Lie algebraso(p) is a vector space of dimensi(ﬂﬁ”;—l). \
For a general reference on differential geometry, reade _ p—1 P ‘7
might consult, e.g., the set of books [37]. ﬁ%’f - PX (Xk?) X( )

As it is instrumental in the development of the averaging
algorithms in the following subsections, it is worth reoall
the notion of Continuous-time Algebraic Riccati Equation

(CARE):
FTS +SF—-SGS+ H =0, (6)
where all matrices are x n andG, H are symmetric and
denotes a symmetric unknown matrix. Lietdenote the factor St (p, n)

in the decompositioty = BB” such that the rank aB equals _ . _ . .

the rank ofG and C denote the factor in the decompositio@r?- 3. Computation of an average matrix by a Stiefel-madif@traction.
T e dots ¢) denote sample matrices to average and the box syntipl (

H = CC" such that the rank o’ equals the rank off. genotes their empirical mean-Stiefel-matrix.

Recall that:

« Ifthe pair(F, B) is stabilizable then there exists a matrix
D such that all the eigenvalues @f + BD have only
negative real parts.

« If the pair(C, F') is detectablethen there exists a matrix
E such that all the eigenvalues 6f + FF have only
negative real parts.

Under the condition thatF, B) is a stabilizable pair and
(C,F) is a detectable pair, the CARE has a unique positive- (i+1) N . ,
semidefinite solution [30]. Algorithmic details about thas X =Pxaw | a Z Peo(Xe) ), 120, (8)
tion of the CARE are available in [5]. k=1

Denote the sample matrices to averageXase St(p,n), where matrixX(?) € St(p,n) denotes an initial guess. When
with k € {1,..., N}, and assume that the samplég are dis- o = +, the fixed point algorithm is a direct extension of the
tributed in a neighbourhood of a center of mass St(p,n). iteration rule proposed in the paper [21].
In the present manuscript, it is assumed that » strictly, as  The following subsections investigate three instances of
the casep = n leads to averaging over the orthogonal grougetraction/lifting maps and associated averaging algorit
O(p), which may be given the structure of a Lie group, hence 1) QR-decomposition-type retraction map and its associ-
such a case may be treated by the method proposed in [23}ed lifting map: In [1], one of the retraction®x that map a

tangent vector ofl’x St(p, n) onto St(p, n) is given by:

in the variableX. In general, however, the equation (7) cannot
be solved in closed form. It may be solved by means of a fixed-
point iteration algorithm, that generates a sequelc¢e <
St(p, n) of estimates of the sought-for empirical mean matrix
X, and that may be written as:

A. Fixed-point arithmetic averaging algorithms &n(p, n) et

The following steps lead to an equation characterizing the Px(V)=df(X + V), 9)
empirical mean matrixX € St(p,n), that represents anyhere the symboif(-) denotes the Q-factor of the thin QR
estimate of the actual center of masse St(p,n) on the  yecomposition of it€R?*" matrix argument and the R-factor

basis of the available information: _ ~is a upper-triangular matrix with strictly positive elenemn
1) Map the pointsX; € St(p,n) belonging to a neigh- jts main diagonal, so that the decomposition is unique.

bourhood of the sought-for mean-matti € St(p, n) In the present paper, it is proposed a way to calculate the
OnIOTXSt(PCiCZL) by applying a lifting map. Denote suchjifting map associated to the above QR-decompositionase
points asV;, = Py ' (Xy). retraction map. Given matrices, @ € St(p, n), if there exists

2) Compute the linear combinatid_ﬁ_: @ fo:l Vi, with  an upper-triangular matriR with strictly positive elements on
a>0.If a= % then the vectol” coincides with the its main diagonal such th&R — X € TxSt(p,n), then the

arithmetic mean of the vectofi,. lifting map Px' can be represented by:

3) Bring back the mean vectoV to St(p,n) by the 1
retraction Px (V') and get an empirical mean matrix Py (Q)=QR-X. (10)
X =Px(V). Then x n matrix R must satisfy the condition:

Such a procedure is illustrated in Figure 3. Summarizing the T T
above procedure, a mean matfix € St(p, n) is the solution XH(QR-X)+(QR—-X) X =0. (11)

of the non-linear, matrix-type equation: Namely, the matrixz may be calculated by solving the linear

system of% independent equations:

N
X=Px|a) Py'(X 7
X( ,; x k)> " MR+ R'MT =21, (12)
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where M X7 () is known. Note that whedX = Q, it holds Algorithm 1 Procedure to calculate the thin-QR-
that M = I,,, hence the equation (12) reducesRor RT — decomposition-based lifting mapy .

2I,. As the matrix R is upper-triangular, the last condition Given matricesX andQ, computeM = X7Q

implies thatR = I,,. As the retractiorP)}l(Q) exists for@Q = if my; > 0 then

X and as any entry;; computes as a rational function of the Set7 =
elementsn,;, by continuity it must exist in a neighbourhood else i

of matrix X. Stop
The (i, 7)™ entry of the linear system (12) reads: end if
j i Seti =2
> mare + > marrei = 2035, (13)  repeat o _
=1 =1 SetM; to the it principal minor extracted frond/
where the symbob;; represents the ‘Kronecker delta’. It is  If det(M;) # 0 then o
immediate to verify that exchanging the indiewith the index Setb; as the column-vector whosg" entry equals
j in the above equation yields the same equation, hence, the __[”_ﬁll mig -+ malry, forj =1,2,....i — 1, while
values of the indices may be restrictedite- 1,2,...,n and Its ™ entry qua_lfl
j=1,2,...,i. Define: Computer; = M;""b;
« The matrix)/; as theit" principal minor extracted from else
My - : Stop
11 mig ——
he matrix M ly: A |- : end i
the matrix M, namely:M; = : : . if (7); < 0 then
mip e Mg ) Stop
« The vectorr; as the column-vector formed by the first  ongif
i elements of the™ column of the matrixk, namely: Seti —i+1
_ def .
i = ri - 'Tii]T- until 7 > n

« The vectord; as the column vector whosg® element Construct the matrix® from the vectors’;
equals—[m;1 mis --- my;|7;, for j =1,2,...,i—1, Compute the liting mapPy'(Q) asQR — X
while its i*" entry equalsl.

Then, the equations (12) may be rearranged as follows: For
any value of the index ranging from1 to n, the unknown
vector7; may be found by solving the linear system:

2) Polar-decomposition-based retraction map and its asso-

ciated lifting map:Given a real-valuedxn matrix A, its polar
M;7; = b;. (14) decomposition is written asl = Q.S, whereQ is a matrix

. . _ - in St(p,n) termedpolar factor of A, hereafter denoted by
Consistency of the solution requires n_ot only tﬁat(Mi).;é O = pf(A), andS is a symmetric positive-semidefinitex n

(.)’ but a_Iso that;; > 0. Note that, for a given value of~the '.ndexmatrix [26]. The polar decomposition of a matrix always &xis

b th? right-hand ternd; depends only on the vectory W'th. _and if the matrix is full rank, then its polar factor is unique
j < i. The procedure to calculate the thln—QR—decomposnme;lven a pointX € St(p,n) and a vectol’ € TxSt(p, n), the

cpan —1 . . . .
based lifting Py "(C) is putllned in the Algorithm 1. _If the polar-decomposition retraction on the Stiefel manifoldyrba
procedure stops before its natural end, then the métridoes written as [1]:

not belong to the domain of definition of the lifting mag; " def

An alternative way to compute the solution of the equation Px(V)=pf(X +V). (16)
(12) would be to recast it as a linear system of the for
Avec(R) = 2vec(I,), where the matrix4 is written in terms
of Kronecker products of appropriate matrices. Such a nteth
was employed to conduct the numerical tests presented in
conference paper [27], [28] but it was found to be humencall (X +VT(X +V) =8TQTQS =
far more expensive than the one presented in the Algorithm 1 T T T T a2
and hence soon abandoned in favour of the latter one. XX+ XV HVIX+VIV =55

On the basis of the thin-QR-type retraction map and of iﬁow, it holds thatX”X = I,, and X7V + VTX =0, and it
associated Ii_fting map, the fixed-point iteration algaritii8) may be readily verified that the matrix + V7'V is positive-
may be particularized to: definite, henceS = (I,, + V7V)z. From the equalityX +
) V = @S, the following closed-form expression for the polar-

i>0,

Under appropriate conditions, the polar-decompositidrace
tion may be written in closed form. In fact, wrifé+V = Q.S.
ﬁ]rgm the condition®)”Q = I,, and S” = 8, it follows that:

N
XD — of <aZXkRk(X(i)) +(1—Na)X® decomposition-based retraction is obtained:
k=1
(15) Px(V)= (X + V)T, +VTV) 5. (17)
where matrix X (®) ¢ St(p,n) denotes an initial guess and
the notationR,(X (")) emphasizes the fact that the upper- A possible lifting map associated to the polar-
triangular matrix R, depends on the current estimal&® decomposition-based-retraction (16) is proposed in the

via the condition (11). present paper on the basis of the following considerations.
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Algorithm 2 Procedure to calculate the polar-decomposition-
based lifting mapPs*.

|
|
Given matricesX and @, computeM = XTQ ——— -
Solve the CARE(—M)S + S(—M7T) +21,, = 0 for S |
Compute the liting mapPy ' (Q) asQS — X |
|
|
Given matrices), X € St(p, n), the lifting map associated to :
the retraction map (16) may be computed as: [
|
PMQ) = QS - X, (18) :
provided that there exists a symmetric positive-semidefini :
n xn matrix S such that) S — X € TxSt(p,n). The tangency
condition read{QS — X)TX + XT(QS — X) = 0. Setting
Md:EfXTQ, the above condition becomes:
(—M)S + S(—MT) + 21, = 0. (19) Fig. 4. lllustration of the notion of orthographic retrastion the manifold

St(p,n) at a point X € St(p,n), with V€ TxSt(p,n) and Z €

When X = @, it holds that)M = I,,, hence the equation VxSt(®.n).
(19) reduces t@S = 2I,. As the retractionP)}l(Q) exists
for @ = X and as any entry;; computes as a rational Ajgorithm 3 Procedure to calculate the orthographic retraction
function of the elementsn;;, by continuity it must exist in Px(V)
a neighbourhood ofX. The equation (19) is linear in the
unknown.S and represents a special case of the CARE (6).

The procedure to calculate the polar-decomposition-base
lifting Pgl(Q) is outlined in the Algorithm 2. If the CARE
does not admit any solution, then the matghdoes not belong
to the domain of definition of the lifting maﬁ’gl.

On the basis of the polar-decomposition-based retractisha retraction orSt(p,n). Note that the quantities(,V, Z

map and of its associated lifting map, the fixed-point iierat are regarded as elements of the Euclidean sfg&ce¢, hence
algorithm (8) may be particularized to: their addition makes sense. Such a retraction is illusirate

Figure 4. From the figure, it is clear that if the tangent vecto
. V is too large, there might not exist any normal vecfor
) » 120, guch that the sunk +V + Z € St(p,n). The orthographic
(20) retraction map on the Stiefel manifoft(p, n) reads:

where matrixX(®) € St(p,n) denotes an initial guess and
the notationSy, (X () emphasizes the fact that the symmetric

positive-semidefinite matrixs), depends on the current estiprovided that there exists @ x n symmetric matrixS such

Given matricesX andV, computeM = X7V + 1,
(iolve the CARE-S? — SM — MTS — VTV =0 for S
ompute the retraction maBx (V) as X (I,, + S) +V

N
XD = pf <a > XiSp(XW) + (1 - Na)x®
k=1

Px(V)=X+V+ X8, (22)

mate X *). thatV + X (I,, + S) € St(p,n), namely, such that:
An alternative solution to the problem of computing the
lifting map associated to the polar-decomposition-baged r (X+V+XHT'(X4+V+XS)=1,. (23)

traction, that would avoid solving a CARE sub-problem, is o )
suggested by the observation that an equation of the fofi€ @Pove equation in the unknown matfixmay be written
ESFT + FSET = G = GT has always a symmetric solution!n Plain form as:
and may be recast §& ® F + F ® E)vec(S) = vec(G), 2 T T Ty,
where symbot denotes Kronecker product, as recalled, e.g.,_S —SXTV A L) = (VEX 4 L) S = VIV = 0. (24)
in the paper [36]. However, it is immediate to verify thatSucThe equation (24) represents an instance of the Continuous-
a solution is extremely expensive from a computational Poifime Algebraic Riccati Equation (6), whefe = —XTV —I,,,
of view and we are not about to pursue it. G = I, and H = —VTV. The orthographic retraction

3) Orthographic retraction map and its associated liftingnap (22) may be computed numerically as shown in the
map: The paper [2] studiesrthographic retractionson sub-  Algorithm 3. It is worth noting that the explicit expression
manifolds of Euclidean spaces. In the paper [2] it is provesf the orthographic retraction map (22) and of the CARE (19)
that, given a paif(X,V) € T'St(p,n), if V is sufficiently in terms of the vectol’ were not given in paper [2].
close to0 € TxSt(p,n), then there exists a normal vector |n the present paper, it is proposed a possible liting map
Z € NxSt(p,n) such that: associated to the orthographic retraction map. It reads:

PV EX+Vv+2 (21) PN Q) =Q—-X - XS, (25)
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for @ € St(p,n) (again thought of as an element of theise the coordinate map combined with the special-orthdgona
Euclidean spac®?*™), which is well-defined provided that group action and its inverse to parametrize Stiefel madifol
there exists a symmetricx n matrix .S such that) — X (I,,+ matrices and tangent vectors to the Stiefel manifold.
S) € TxSt(p,n). The tangency condition of the lifting map In the following subsections, we introduce the notions of
reads, explicitly: pseudo-retractiomndpseudo-liftingmaps and investigate two
- - instances of such maps.
X (Q-X-X+(Q@-X-XSS) ' X=0. (26) 1) cayley-type retraction/lifting pair:A difficulty related

to the retraction (30) in the present context is that theee ar
no known results about its inversion. A result publishechia t
paper [23] that partially overcomes such a difficulty comeer

_ 1 7 Ty the specific case that the retraction (30) is used to parametr
5= 2 (@ X+ X7Q) — L. 27) matrices in a neighbourhood of the matfi, 0]” € St(p,n)

Hence, the orthographic lifting map may be written in closednd that the coordinate map is chosen as the Cayley map
form as: Cay : so(p) — SO(p) defined by:

The above equation in the unknown matixis linear and
admits the explicit solution:

def _ _
PLUQ) = Q- %X(QTX + XTQ), 28) Cav(Q=(L+Q)(, -9 V= (1, - )71, + Q). (31)
) ] o ~ The fundamental limitation that the retraction be used in a
Itis worth remarking that the orthographic lifting map isé&r nejghbourhood of the matri,, 0] € St(p,n) is due to the
in its argument. The orthographic lifting maPy* may be fact that the domain of the coordinate mapis restricted in

derived by applying a projection operataty : R”*" — 23] to the setV of the skew-symmetric matrices with block
T'xSt(p,n) into the tangent spac€x St(p,n) corresponding gtrycture:

to the Euclidean metric ilRP*™ [22] to the quantity@ — X. Q- [ A —-BT }
namely, P;! (Q) = mx(Q — X). B 0 |’
The fixed-point averaging algorithm corresponding to thghere A is an x n skew-symmetric matrix and3 is an
orthographic retraction/lifting pair reads: arbitrary (p — n) x n matrix, where the dimension of the
def spacelV is calculated aslim W = pn — nntl) The paper
A:.O‘Zk Xe, . , , [23] makes, thus, use of pseudo—retractioanalﬁA’ W —
VO = A—LXx®AT X0 _ LxO(XxO)T4  (29) St(p.) defined by: X
X+ — x0(1, + S(XO, VD)) + V), P, y:
Px ()

(32)

o = Cay(Q)X. (33)
for i > 0, where the notatiors(X (), V(?)) emphasizes the

. . . A_l
fact that the symmetric facta¥ depends on the current iterate 1h€ @ssociategseudo-lifting mapPy ™ returns a skew-

X® and the tangent vectdr (. symmetric matrix of the type (32), with:
A = 2(X7 + Q) sk(Qy Xy + X Qi) (Xu + Qu)
B. Fixed-point arithmetic averaging algorithms dft(p,n) B = (Q— X))(Xu+Qu) ™",

via a Lie-group action Wheresk(M)d:ef%(MT — M) for an arbitrary square matrix

The special orthogonal groufO(p) acts on the Stiefel A/ and the following block-partitions were made use of:
manifold St(p,n) via pre-multiplication. Namely, ifG € Xu Qu .
SO(p) andg( € St(p,n), then GX € St(p,n). The pre- = — { X, ] € St(p,n) and @ = [ O ] € St(p,n), with
multiplication-based action may be exploited to design &,,Q, € R™*" and X;,Q; € R»=™)*" provided that the
retraction map for the Stiefel manifold, as it was suggestedatrix X,, + Q,, be nonsingular. Note that, wheX = Q, it
in [11] and subsequently applied to optimization problems dholds thatQ? X, + X' Q, = 21,,, whose skew-symmetric part
the Stiefel manifold in [12]. Such a result may be summarizesl zero, hence, it holds that = 0 andB = 0. As the retraction

as follows. Define: P)gl(Q) exists forQQ = X and as any entry of matrices and
« A coordinate map}) : so(p) — SO(p) such that)(0) = B computes as a rational function of the entries of matrices
I,. Xu, Qu, X1, Qp, by continuity it must exist in a neighbourhood
« A function px : so(p) — TxSt(p,n), defined by Of the matrixX. S .
pX(U)déf i(tU)X] _ 2) Proposed _fu_II-Caery retraction/lifting pa|r:In_ th_e
. A linear Fir%ap ax t::OT)(St(p, n) — so(p) such that present paper, it is proposed that a full parametrization of

_ the algebraso(p) be used instead of the block structure
=V f Tx St .
pX(aX(V))_ v for ?ny‘_/ € TxSt(p,n) (32). In this case, the retraction map takes again the form
Then, a retractlonPX which is a map fromI'xSt(p,n) to px(ﬂ) — Cay(Q)X but now Q2 € so(p). The calculation
St(p,n) is given by: of the pseudo-lifting mapP; " implies the solution of the
_ _ def equation@Q = Px(Q) for Q € so(p) for Q,X € St(p,n)
Px(V) =v(ax(V)X = (@)X, @=ax(V) € so(p). given, or, equivalently, of the equati¢f, — Q) ! (1,+Q)X =

(30) . . i )
A key observation is that, in the present context, it is né?- Rearranging terms, the latter equation may be written as:

necessary to utilize the full retractidPy as it is sufficient to AR+X)=Q - X. (34)
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There appear to be no known closed-form solutions of equa- s0(p)
tions of the type (34). It is to be noted that the equation (34)
does not possess a unique solution, in general. A closea-for
solution to the problem (34) was found in the special cask tha
the dimension index is an even number. Recall the following
preliminary facts about skew-symmetric matrices:

« Any skew-symmetric matrix of odd size is not invertible
(as a consequence of Jacobi's Theorem [17]).

« If a skew-symmetric matrix? is invertible, its inverse
is also skew-symmetric, in faqtQ—1)7 = (Q7)~! =
(_Q) t=-07l Fig. 5. Averaging over the Stiefel manifold via specialh@gonal-group

In the case that a Stiefel ma_nifogjt(p7 n) with n being an action and the Cayley map. The_ QOts) denote sam_ple matrices and the
even number is considered, a possible closed-form soltionP®X Symbol €) denotes their empirical average matrix. Symbbi denotes

a pseudo-retraction map while symhBl, - denotes its associated pseudo-
the problem (34) may be found as follows. The sought-f@fing map.
skew symmetric matrix may be written by tla@satz

QO=2zQ-Xx)T, (35) Algorithm 4 Fixed-point averaging algorithm resulting from
the pseudo-retraction map introduced in [23].
Input matricesX;, € St(p,n), k =1,...,N andX©® ¢
St(p,n) and number of iteration$
for i =0to I do

with Z of size p x n unknown. Substituting equation (35)
in equation (34) yields) — X = Z(Q — X)T(Q + X) =
Z(QTX — XTQ). If the n x n matrix sk(X7Q) is nonsin-

gular, thenZ = %(Q — X)sk ' (XTQ). Replacing such an Pe0 _
expression forZ in equation (35) gives the final result: Define the block-partitiorX () = [ Xléi) ] with Xff) €
l
PRQ = 5@~ X XTQ@- X" @) R X[ e RO
for k=1to N do
It is straightforward to check thdt) — X)sk ' (X7Q)(Q — Define the block-partitionX, = [ Kuk } with
X)7 is skew-symmetric and thaPx (P5'(Q)) = Q. The . (p—n)xn Xk
above setting may be referred to #&sll-Cayley pseudo- X“k € R;i) » Xip €R
retraction/lifting case. if det(X.~ + Xy ) = 0 then
3) Averaging algorithm based on the Cayley maphe St_(_)p
averaging algorithm related to the use of a Cayley-map¢base end if () (i) _1
retraction, and of its associated lifting map, may be oatlin Compute matrixl;, " = (Xu” + Xu,) _
as follows: Compute matrix A,(j) = 2(L,8))Tsk(X§kX3) +
1) ComputeN matrices(2; by means of the pseudo-lifting (Xl(l))TXl.,k)Lg) } , ,
map P5!(Xy). Compute matrixB,(j) =Xk — Xl(z))L,(j)

2) Compute a linear combination of the obtained skew-
symmetric matrice§2 = a Yr_, Q, with a > 0.
3) The empirical mean matrix must then satisfy the condi-  end for
tion X = Px (). Compute matrix"® = >V 0
Note that the matriceQ,,, and hence their linear combination Update X (+1) = ([p + ar(i)) (Ip _ ar(i))*l X @
2, depend on the matriX. The above procedure is illustrated end for
in Figure 5. The empirical mean matri is, thus, the solution
of the non-linear, matrix-type equation:

N N -
X = (IﬁaZPXl(Xk)) (Ip—aZPX%Xk)) X. | N _
k=1 k=1 37) XU = Cay <O‘Z )?(1) (Xk)> x®. (38)

Note that a matrixX can be a solution of the equation (37) k=1

only if there exists a matrix2 € W or so(p) such thatX = The fixed-point algorithm resulting from the pseudo-retat

I, — o)~ (I, + o) X, that is equivalent t®2.X = 0. map introduced in the paper [23] is illustrated in the Al-
In general, the equation (37) cannot be solved in closgdrithm 4, while the iterative algorithm resulting from the

form, hence, it is necessary to resort to an iterative algari application of the full-Cayley setting is explained in thigé-

to seek for its solution. In particular, in the present manips, rithm 5. For the Algorithm 4, it is assumed that all the magsic

a sequenceX ) ¢ St(p,n) of increasingly refined estimatesX; and X(® lay in a sufficiently narrow neighbourhood of

of the empirical mean matrix of a given set of sample ithe point[Z,, 0]7, while such a limitation is not present in the

sought for via a fixed-point algorithm with initial gue&&® e  Algorithm 5.

Construct matringj) -

AP -
B 0

St(p,n):
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Algorithm 5 Fixed-point averaging algorithm oft(p,n), St(p, n)-samples and that the method implements the required
with n _even, resulting from the full-Cayley pseudo-retractioprojection.

map. It is also worth discussing the relationship between the
Input matricesX; € St(p,n), k = 1,...,N and X ¢ averaging method proposed in the present contribution with
St(p,n) and number of iterations Maximum Likelihoodstimation of the parameters of statistical
for i=0to I do distributions defined on the Stiefel manifold, as described
for k=1to N do in detail in the book [14]. The approach followed in the
if det(sk((X )T Xy)) = 0 then present paper is different from an approach based on maximum
Stop likelihood estimation. Maximum likelihood estimation iaded
end if on hypothesizing a probability model for the data, which
Computeﬂg) = 3(Xp—XD)sk ™ (XD)TX})(X),— includes some parameters, and in finding the optimal valties o
XNT the parameters in a maximum-likelihood sense. In the ptesen
end for paper, no hypotheses are made about the distributionaéprop
Compute matrix® = S°~ Q](:) ties of the samples (except that the distribution is comeded
Update X (i+1) = (I, + aT' D) (I, — aF(i))_l x () around a center of mas;). .
end for A well-known averaging theory is that dfarcher mean

[29]. Karcher mean is based on the optimization on a criterio
function, which in turn is written in terms of geodesic dista
between the samples and the sought-for mean. Such a con-
struction basically extends in a geometrically-sound way t
The fundamental equation (7) that defines an average mattfinition of sample average over a flat space as the point that
on the compact Stiefel manifold may be regarded as #has close as possible to the samples altogether. Most of the
extension of the Kolmogoroff-Nagumo averaging rule for reavorks on the subject available in the literature are coregrn
numbers (for a recent discussion see, e.g., [33]) and mayJséh the minimization of such a criterion function by a
used to compute averages on other manifolds of interest.gradient-steepest-descent methods and on the individtuati
particular, it may be applied to the manifold’>™. Given the conditions under which such methods converge. Some re-
matrices X,Q € RPX™ and V € TxRP*X" =~ RPX" g centworks also consider alternative methods, such as Mewto
retraction/lifting pair may be taken a8y (V) = X + V and optimization, conjugate gradient or stochastic optimaat
P)gl(Q) = @ — X. Then, the fundamental equation wouldrThe method proposed in this paper does not rely on any

C. Relationships with other averaging methods

read: criterion function and on any gradient-based-like optitiian
N method but is completely different in nature. It is based on a
X=X+a Z(Xk - X), (39) characterization of the average in terms of arithmetic ayer
k=1 on a tangent space, which leads in a natural way to a fixed-

whose solution is the well-known Pythagoras' mean matrBQINt implementation.

Xpa:
L& I11. NUMERICAL RESULTS
def L . :
Xpa= N Z Xk (40) The present section illustrates the numerical behavidnef t
k=1 discussed retraction/lifting map-pairs in the contextwdrag-

It is worth noting that the solution does not depend on tHR9 over the Stiefel manifold. The discussed retractiétmiy
value of the coefficient: # 0. The fundamental equation (7)MaP-pairs are summarized in the Table I, along with their

may be read as Pythagoras’ mean rephrased in the languBgacipal features. _ o
of manifolds. n the numerical experiments, the center of the distributio

Naive (or extrinsic) averaging consists in computing aa'meCRE St(% n)is g_enere]}ted by cpmpugng }he Q-factor of a,fhm_
combination of the availabl&t(p,n) samples, thought of Q_ ecomposition of & matrix randomly generatedk
as elements of the linear matrix spage*" followed by a with normally-distributed entries. Th& samples to average

projection of the result onto the manifot(p, n). The linear are generated by the rule

combination of N samplesX;, € St(p,n) may be denoted as X = exp(af)C, (41)
a) . Xir (wherea = 1/N would correspond to arithmetic et

average on the spa@®*"). A theoretical foundation of such with €, = sk(A;), with A;, being a matrix randomly generated
an approach for another manifold of interest (namely, the RP*? with normally-distributed entries; > 0 controls the
manifold of symplectic matrices) was explained in the papspread of the distribution around the center &nd 1,..., N.
[20]. To what concerns the Stiefel manifold, it should beetbt  The initial guessX(®) may be chosen near one of the
that the method described in the section 1I-B.3 essentialiyailable samples. In the present simulations, the irgtisdss
implements such a naive approach. From the equations (283s chosen by slightly rotating the sample via a quasi-unit
that describe in details the orthographic retractiomfiiftpair- random rotation.

based averaging method, it is readily seen that the matrixin order to inspect the behavior of the proposed algorithms,
A is computed as a linear combination of the availabkae following measure of discrepanéy St(p, n) xSt(p,n) —
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TABLE |
RETRACTION/LIFTING MAP-PAIRS, DISCUSSED INSECTION ||, ALONG WITH THEIR PRINCIPAL FEATURES

Retraction/lifting on St(p,n) | Features
QR-decomposition The lifting map may be computed efficiently by solving lineaistems in an appropriate order|
Polar decomposition The retraction map may be expressed in closed form. Thadifthap may be computed by
solving a CARE.
Orthographic The retraction map may be computed by solving a CARE. Thiadifnap may be expressed
in closed form. The resulting averaging algorithm is ananse of ‘naive’ averaging.
Cayley-type Both the pseudo-retraction map and the pseudo-lifting map be expressed in closed form.
The resulting averaging algorithm is well-defined only ineighborhood of the matriZ,, 0]T.
Full-Cayley-type Both the pseudo-retraction map and the pseudo-lifting map be expressed in closed form.
The resulting averaging algorithm is well-defined only foeven.

R between two Stiefel-manifold matrices is made use of:

B Y)E L~ XY e, (42)
where || - ||r denotes the Frobenius norm. Note that for
every X,Y € St(p,n), it holds thatdé(X,X) = 0 and
§(X,Y) = 4(Y,X). It may be used to measure the discrep- 05
ancy between two successive steps of the algorithm, compute
as§(X @, xX(+1D)) and the discrepancy between the current
estimate and the actual center of the distribution, namely
(XD ).

-0.5

A. Tests on learning stepsize

In order to determine a learning stepsizdor the learning -1
algorithms, a number of numerical tests was performed. In
particular, the following values were tested, & and k.

The result of extensive numerical simulations is that there
are no real advantages in choosing a value different from the
theoretically-optimal onex = % Such a value corresponds

to ar!thmetlc qveragmg over.tangent spaces and makes &?ﬁ‘e. Experiment about averaging on the sphr€s, 1). The samples to
learning equations take the simplest form. average are denoted by cross mark$, the actual center of the distribution is

Although, in principle, variable stepsize schedules migHgnoted by a diamond mark)(and the computed empirical mean is denoted

. . o b& a box symbol ).
be devised, in the present paper such a possibility was not

exploited in order to keep the computational burden limited

B. Single trials and comparisons the actual center of the distribution. It is to be noted that

The Figure 6 is about averaging on the sphgté3, 1), the Cayley-pseudo-retraction-based algorithm is the etbw
for which is it possible to provide a graphical rendering d© converge, due to the limitations explained in the sec-
the result. Such a numerical simulation was performed witn 11-B. The QR-decomposition, Orthographic and Polar-
N = 30 samples, generated with a spread value 0.3, and decomposition retraction/lifting based algorithms cageethe
was performed by using the QR-retraction-based averagﬁ"f’éteSt-
algorithm. The Figure 6 gives a quick picture of the meaning The Figure 9 shows a result of averaging real-world sam-
of the developed learning theory on curved manifolds. ples over the manifoldSt(5,2). The N = 50 samples

The following experiment is about averaging over th&o average were obtained by running a fastiICA algorithm
manifold St(20,4). For this experiment, a numbeN = [15], which separateg independent source signals out Hf
30 of samples were generated with a spread parameteixtures, on50 independent trials on the same separation
a = 0.01. The Figure 7 shows the values of the indeproblem. The Figure 9 illustrates the obtained results, ex-
§(X®,C), while the Figure 8 shows the values of thegressed in terms of separation performance index (PI) [15].
index §(X@, X+ The two pictures compare the beAgain the QR-decomposition-based-retraction algorittime,
havior of the QR-decomposition-based-retraction alparit Polar-decomposition-based-retraction averaging alyorithe
the Polar-decomposition-based-retraction averagingrilfgn, Cayley- and the full-Cayley-pseudo-retraction algorithamd
the Cayley- and the full-Cayley-pseudo-retraction-basgd- the Orthographic-retraction-based algorithm were tesfed
rithms and the Orthographic-retraction-based algoritimnthe they behave similarly about final performance after iterati
present experiment, all the algorithms behave satisflyctnd the average value of the separation indices was retained as
converge to solution-matrices with similar discrepanceigth a good representative of their collective behavior. Therégu
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Fig. 9. Result of averaging over the manifdd(5, 2) on real-world fastiICA

Fig. 7. Experiment about averaging on the manif@lt(20,4). Index Samples. The bars show the values of the separation perfoariadex (Pl)

§(X®, C) during iteration. pertaining to (_aach sample, while the h(_)nzontal_lme intisathe average
PI corresponding to the average separation matrix compyeithe 5 tested
algorithms on the same data-set.

Manifold: St(20,4)

10 - Manifold: St(100,n)
QR 10"
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Fig. 8.  Experiment about averaging on the manifét(20, 4). Index
5(x @, x(+1)) during iteration. Fig. 10. Figure about runtimes for the manifd@dd(100, n) with n varying.

shows that the value of the Pl corresponding to the empiricgsized problems, the Cayley and full-Cayley pseudo-ratract
average matrix collocates in an average position with r@sp®ased algorithms are preferable.
to the PI values of the single samples.

D. Consistency of the estimation

C. Computational-complexity evaluation In order to get some insights into the consistency of the

The Figure 10 shows the runtimes corresponding to tldevised averaging method, some numerical experiments were
five tested algorithms run on the manifoft(100,») with performed by varying the number of available samples and by
n varying. Such a numerical simulation was performed witharying the spread of the distribution of the samples toayer
N = 50 samples generated with a spread-parameter valmund a given center of mass.

a = 0.01. Each averaging experiment for each value of The Figure 11 shows the results of averaging obtained by
the indexn was repeated 00 times to get rid of random varying the number of available samples, while the spread
fluctuations in the evaluation of runtimes. The obtainedliss parameter was fixed ta = 0.03. The curves shown in the
allow the conclusion that for low-dimensional problems,,i. Figure 11 are the average resulttahdependent trials over the
for n < 20, the Orthographic retraction based method is thanifold St(20, 4) obtained by each method corresponding to
lightest in terms of computational burden, while for largetthe different retraction/lifting pairs discussed in thectsm Il.
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Fig. 11. Results of averaging obtained by varying the numbef available Fig. 12.  Results of averaging obtained by varying the spreaof the
samples fromL0 to 10° with log-step10. The number of iterations for each distribution of the samples from.01 to 0.5 with step 0.01. The number
algorithm was set td 5. of iterations for each algorithm was set 16.

The obtained numerical results show that the discrepansyjection and the pseudo-retraction map based on thenactio
between the computed empirical arithmetic average and ibfe the special orthogonal group on the Stiefel manifold,
actual center of the distribution decreases when the nuofbewhen the Cayley map is used as a retraction on the special
available samples increases, which confirms numericaly tbrthogonal group of matrices. The problem of calculating
consistency of the proposed averaging method. the associated lifting (or pseudo-lifting) maps was adskds
The Figure 12 shows the results of averaging obtained byth from a theoretical viewpoint and from an implementatio
varying the spread of the distribution of the samples, whildewpoint. The main aim of the submitted paper was to find
the number of available samples was fixedNo= 100. The ways to calculate the lifting maps associated to the meation
curves shown in the Figure 12 are the average resuli0of retraction maps. Such calculations were the major source of
independent trials over the manifdid(20, 4) by each method difficulty and of necessary research work.
corresponding to the retraction/lifting pairs discussedhe The Stiefel matrix calculated by means of the proposed
Section Il. Note that the Polar-decomposition method ard tmethod may be defined as ‘average matrix’ because it corre-
QR-decomposition method (whose curves look superimposgsbnds, via appropriate applications of retractionfigtimaps,
in the Figure 12) eventually become unstable (araurd0.2). to the Pythagoras’ arithmetic average calculated over a flat
The Orthographic-based method proves to be the most robsisace, which is a tangent space at a specific point to the

with respect to the spread of the distribution. Stiefel manifold. In other terms, the average over the tahge
space corresponds to the average over the manifold upon non-
IV. CONCLUSIONS linear transforms, which makes the found matrix be an awerag

The present research work extends the algorithm introducaéefel matrix.
in [21] to Compute averages over Lie groups to the CompactNUmerical experimental I’esultS were ShOWn and Commented
Stiefel manifold. The present method inherits the main aevaon in order to illustrate the numerical behavior of the pregub
tage of the previous method’ name|y, it does not involve awocedure. The obtained results confirm that the deVGIObed a
metrics and is hence more general than the Riemannian m8&fthms converge steadily and in a few iterations and thet t
method. are able to cope with relatively large-size problems with no
The idea underlying the developed algorithms is that poinggnificant numerical errors. In particular, a comparisaseul
on the Stiefel manifold get mapped onto a specific tange®ft convergence features and computational complexityeggur
space, where the average is taken, and then the average pdlaws concluding that the full-Cayley pseudo-retractiased
on the tangent space is brought back to the Stiefel manifofigorithm and the Orthographic-projection-based mettftet o
The switching of points from/to the manifold to/from thethe best trade-off between convergence speed, compuhtion
tangent bundle is performed by the help of a retractiomljft Purden and robustness.
maps pair (or pseudo-retraction/pseudo-lifting maps spair Some topics related to the present research emerged that
customized to the case of the Stiefel manifold. In partigulashould be pursued in the future:
four different retraction (or pseudo-retraction) maps aver « Study analytically the convergence properties of the fixed-
recalled from the literature, namely, the retraction mapeba point averaging algorithm, possibly in conjunction with a
on the thin-QR-decomposition, the retraction map basettent  variable stepsize schedule selection rule. Such an aralysi
polar decomposition, the retraction map based on orthdigap could benefit of some recent works on the convergence
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of fixed-point algorithms on certain manifolds as summazo]
rized, e.g., in the paper [32].

« Seek for a more general solution to the equation (34)
to compute the lifting map associated to the full-Cayleyi1)
transform.

o Take into account the ‘Mostow decomposition’ [6] to[lz]
design a further retraction/lifting pair for the Stiefel
manifold.

« The proposed averaging method is based on arithmetic
averaging a tangent space, which is a linear spaggy
The proposed method may be generalized by invoking
different kinds of averaging over a linear space on the
basis of different distance measures (or, more generam]
divergences) over linear spaces. A noteworthy class ¥
divergences is given by Bregman theory, that was used
to define averages over a hypersphere in [18] and uded
to define averages on subsetsRSf in [35].

Further efforts will be directed along the line of seekingrao [17]

general schemes to compute averages over the Grassni&fin

manifold and the ‘flag manifold’. [19]
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