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Empirical Arithmetic Averaging over the Compact
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Abstract— The aim of the present research work is to inves-
tigate algorithms to compute empirical averages of finite sets of
sample-points over the Stiefel manifold by extending the notion
of Pythagoras’ arithmetic averaging over the real line to a curved
manifold. The idea underlying the developed algorithms is that
sample-points on the Stiefel manifold get mapped onto a tangent
space, where the average is taken, and then the average point
on the tangent space is brought back to the Stiefel manifold,via
appropriate maps. Numerical experimental results are shown and
commented on in order to illustrate the numerical behaviourof
the proposed procedure. The obtained numerical results confirm
that the developed algorithms converge steadily and in a few
iterations and that they are able to cope with relatively large-
size problems.

Index Terms— Arithmetic averaging, Matrix manifolds, Em-
pirical averaging on matrix manifolds, Manifold retractio n, QR-
decomposition, Polar decomposition, Cayley transform, Ortho-
graphic projection.

I. I NTRODUCTION

REPRESENTATIONS involving structured matrices, such
as orthogonal, symplectic, Toeplitz Hermitian-positive

matrices, special Euclidean matrices and unitary matrices,
arise in signal processing. Known situations are principal
component analysis and independent component analysis by
signal pre-whitening [15], radio interferometry [25] and op-
tical system modelling [19]. Moreover, in statistical data
processing, the data may appear under the form of random
structured matrices (see, e.g., [16]). Random matrix theory is
an important and active research area and it finds applications
in fields as diverse as physics, wireless communications and
information theory. A useful statistical characterization of a set
of structured matrices is their empirical mean, which appears
as an average matrix carrying on the same structure of the
data themselves. Averaging over a data-set is a good method
to smooth-out data and to alleviate measurement errors and
random fluctuations. Occasionally, the median instead of the
mean is made use of (see, e.g., [8]): Theorems of existence of
medians on manifolds recently appeared in [3] with applica-
tions to Toeplitz Hermitian positive-definite matrices [7].

In the case of unconstrained data, such as, for example,
in the case that the matrix-type data belong to the flat space
R

n×n, simple arithmetic averaging produces the desired result.
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Fig. 1. Illustration of the averaging algorithm on the Lie groupG proposed in
[21]. The dots (•) denote sample elements and the box symbol (2) denotes the
empirical average element. The procedure of computing an average element
works as follows. The first step is to perform a left-translation ℓx of each
samplexk ∈ G about the sought-for average elementx ∈ G so as to move
all translated samples to a neighbourhood of the identity elemente of the
Lie group G. The next step is, by means of a lifting mapP−1

e , to map all
samples onto the Lie algebrag and to compute their arithmetic mean denoted
by u. The final step consists in mapping the Lie-algebra elementu onto G
by exploiting a retraction mapPe and then to get the mean elementx by the
inverse left-translationℓ−1

x .

However, in the case that constraint conditions – such as or-
thogonality – are to be taken into account, arithmetic averaging
does not produce any sensible result (for example, the result
of entry-by-entry addition of two orthogonal matrices is not
orthogonal, in general). Therefore, to compute statisticson
spaces of matrices, it is necessary to build up algorithms that
take into account the geometric structure of the (generally
curved) space that those matrices belong to. See, for example,
the computation of themean shift on Riemannian matrix
manifolds [38], the rich corpus of results about the space
of symmetric positive-definite matrices [10], [31] and, as a
generalization, the Bayesian analysis of the statistics ofStiefel-
matrices that represent subspaces in a Grassmann-manifold
setting [9], [34].

Fiori and Tanaka [21] presented a general-purpose averaging
algorithm that works for matrix Lie groups and, in particular,
for the space of special orthogonal matrices, that are square
matrices with mutually orthogonal unitary-norm columns and
such that their determinant is positive (namely, they represent
high-dimensional rotations). A Lie group is an algebraic
group endowed with a manifold structure compatible with
its algebraic structure. The method presented in [21] exploits
the relationship between a Lie group and its associated Lie
algebra and is illustrated in Figure 1. Although there is a
connection between the method proposed in [21] and the
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notion of Riemannian or Karcher mean [29], the substantial
difference is that the Riemannian mean is defined on the
basis of a dispersion criterion that involves the Riemannian
(or geodesic) distance between two points, while the method
proposed in [21] does not involve any metrics and is hence
more general, in this regard. Other methods have been recently
proposed in the literature to tackle the problem of average
computation, as, for example, the method based on stochastic
flow to compute averages on manifolds [4].

The method presented in [21] relies on a class of func-
tions, termed ‘lifting maps’, that map an element of the Lie
group to the Lie algebra and on a class of functions, termed
‘retraction maps’, that map an element of the Lie algebra
onto the Lie group. The problem ofaveraging on non-Lie-
group-type manifolds is substantially more difficultbecause
the calculation of appropriate retraction (and especiallyof the
lifting) maps is a substantially more involved and less studied
problem. Hence, averaging on non-Lie-group-type manifolds
cannot be achieved by any trivial extension of the method
proposed in [21]. It could be tackled as a Riemannian-mean
or Karcher-mean computation problem, but in some cases a
distance function on manifolds of interest may be unavailable
in closed form. In particular, the problem of averaging on the
compact Stiefel manifold (the space of orthogonal rectangular
matrices), which is not a Lie group, is worth analyzing because
a number of signal-processing applications require statistical
computation over the Stiefel manifold, such as data clustering
[13], image and video-based recognition [40], Bayesian fil-
tering [39] and manifold learning for expression analysis and
human motion analysis [24]. The aim of the present research
work is to extend the algorithm introduced in the paper [21] to
compute averages over the compact Stiefel manifold. The idea
behind the developed algorithms is that points on the Stiefel
manifold are mapped onto a tangent space where the average
over mapped points is taken, and then the average point on
the tangent space is brought back to the Stiefel manifold. To
summarize the method in a sentence,the average of samples
on the Stiefel manifold is computed by applying a retraction
to the arithmetic average of the lifted samples.

Most of the research work described in this paper concerns
the individuation of appropriate retraction/lifting mapsfor the
Stiefel manifold and of efficient ways to implement them, as
explained in section II. In particular, in the present research
work, a QR-decomposition based retraction map, a polar-
decomposition-based retraction map, an orthographic retrac-
tion map and two Cayley-transform-based pseudo-retraction
maps, along with their associated lifting and pseudo-lifting
maps, are studied and tested numerically. The results of several
numerical tests are illustrated in the section III. SectionIV
draws the conclusions.

II. A RITHMETIC AVERAGING ALGORITHMS ON THE

COMPACT STIEFEL MANIFOLD

The aim of this section is to build up arithmetic averaging
algorithms on the Stiefel manifold based on the notion of
manifold retraction. In particular, the proposed method is
based on a fast fixed-point algorithm. The compact Stiefel

Fig. 2. Illustration of the notion of retraction mapPX and of lifting map
P−1
X

about a pointX ∈ St(p, n). The dashed-circle represents the domain
of definition of the lifting map.

manifold is defined by:

St(p, n)
def
= {X ∈ R

p×n|XTX = In}, (1)

where symbolIn denotes an × n identity matrix andn ≤
p, namely, the manifoldSt(p, n) is the space of the ‘tall-
skinny’ orthogonal matrices. The compact Stiefel manifold
has dimensionpn − n(n+1)

2 . Its tangent space at a point
X ∈ St(p, n) may be expressed as:

TXSt(p, n) =
{

V ∈ R
p×n|XTV + V TX = 0

}

. (2)

Each tangent space is a vector space of dimensionpn− n(n+1)
2

under standard matrix addition and multiplication by a real-
valued scalar.

A retraction at a pointX ∈ St(p, n) of a Stiefel manifold
is a mapPX : TXSt(p, n) → St(p, n) such that, for each
tangent spaceTXSt(p, n), it holds that [11]:

1) The retractionPX is defined in some open ball about
0 ∈ TXSt(p, n).

2) It holds thatPX(0) = X .
3) It holds that d

dt
PX(tV )

∣

∣

t=0
= V .

A retraction induces local coordinates on the manifold
St(p, n). A map P−1

X : St(p, n) → TXSt(p, n) such that
PX(P−1

X (Q)) = Q, for Q ∈ St(p, n), is termedlifting map.
A lifting map is defined only locally and is not unique, in
general. The notions of retraction map and of lifting map are
illustrated in Figure 2.

The compact Stiefel manifoldSt(p, n) is a submanifold
of the Euclidean spaceRp×n. As such, a normal space
NXSt(p, n) may be associated to each pointX ∈ St(p, n),
which is given by:

NXSt(p, n) =
{

XS|ST = S ∈ R
n×n

}

. (3)

The special orthogonal group of matrices, denoted by
SO(p), is defined as:

SO(p)
def
= {G ∈ R

p×p|GTG = Ip, det(G) = 1}. (4)

It is a Lie group under standard matrix multiplication and
inversion, with the matrixIp being its identity element. Its



KANEKO, TANAKA, FIORI: EMPIRICAL ARITHMETIC AVERAGING OVE R THE COMPACT STIEFEL MANIFOLD 3

associated Lie algebra is:

so(p)
def
= {Ω ∈ R

p×p|ΩT = −Ω}, (5)

namely, it is the set ofp × p skew-symmetric matrices. The
Lie algebraso(p) is a vector space of dimensionp(p−1)

2 .
For a general reference on differential geometry, readers

might consult, e.g., the set of books [37].
As it is instrumental in the development of the averaging

algorithms in the following subsections, it is worth recalling
the notion of Continuous-time Algebraic Riccati Equation
(CARE):

FTS + SF − SGS +H = 0, (6)

where all matrices aren× n andG,H are symmetric andS
denotes a symmetric unknown matrix. LetB denote the factor
in the decompositionG = BBT such that the rank ofB equals
the rank ofG andC denote the factor in the decomposition
H = CCT such that the rank ofC equals the rank ofH .
Recall that:

• If the pair(F,B) is stabilizable, then there exists a matrix
D such that all the eigenvalues ofF + BD have only
negative real parts.

• If the pair(C,F ) is detectable, then there exists a matrix
E such that all the eigenvalues ofC + EF have only
negative real parts.

Under the condition that(F,B) is a stabilizable pair and
(C,F ) is a detectable pair, the CARE has a unique positive-
semidefinite solution [30]. Algorithmic details about the solu-
tion of the CARE are available in [5].

Denote the sample matrices to average asXk ∈ St(p, n),
with k ∈ {1, . . . , N}, and assume that the samplesXk are dis-
tributed in a neighbourhood of a center of massC ∈ St(p, n).
In the present manuscript, it is assumed thatp > n strictly, as
the casep = n leads to averaging over the orthogonal group
O(p), which may be given the structure of a Lie group, hence
such a case may be treated by the method proposed in [21].

A. Fixed-point arithmetic averaging algorithms onSt(p, n)

The following steps lead to an equation characterizing the
empirical mean matrixX ∈ St(p, n), that represents an
estimate of the actual center of massC ∈ St(p, n) on the
basis of the available information:

1) Map the pointsXk ∈ St(p, n) belonging to a neigh-
bourhood of the sought-for mean-matrixX ∈ St(p, n)
ontoTXSt(p, n) by applying a lifting map. Denote such

points asVk
def
=P−1

X (Xk).
2) Compute the linear combinationV = α

∑N

k=1 Vk, with
α > 0. If α = 1

N
, then the vectorV coincides with the

arithmetic mean of the vectorsVk.
3) Bring back the mean vectorV to St(p, n) by the

retractionPX(V ) and get an empirical mean matrix
X = PX(V ).

Such a procedure is illustrated in Figure 3. Summarizing the
above procedure, a mean matrixX ∈ St(p, n) is the solution
of the non-linear, matrix-type equation:

X = PX

(

α

N
∑

k=1

P−1
X (Xk)

)

(7)

Fig. 3. Computation of an average matrix by a Stiefel-manifold retraction.
The dots (•) denote sample matrices to average and the box symbol (2)
denotes their empirical mean-Stiefel-matrix.

in the variableX . In general, however, the equation (7) cannot
be solved in closed form. It may be solved by means of a fixed-
point iteration algorithm, that generates a sequenceX(i) ∈
St(p, n) of estimates of the sought-for empirical mean matrix
X , and that may be written as:

X(i+1) = PX(i)

(

α
N
∑

k=1

P−1
X(i)(Xk)

)

, i ≥ 0, (8)

where matrixX(0) ∈ St(p, n) denotes an initial guess. When
α = 1

N
, the fixed point algorithm is a direct extension of the

iteration rule proposed in the paper [21].
The following subsections investigate three instances of

retraction/lifting maps and associated averaging algorithms.
1) QR-decomposition-type retraction map and its associ-

ated lifting map: In [1], one of the retractionsPX that map a
tangent vector ofTXSt(p, n) onto St(p, n) is given by:

PX(V )
def
=qf(X + V ), (9)

where the symbolqf(·) denotes the Q-factor of the thin QR
decomposition of itsRp×n matrix argument and the R-factor
is a upper-triangular matrix with strictly positive elements on
its main diagonal, so that the decomposition is unique.

In the present paper, it is proposed a way to calculate the
lifting map associated to the above QR-decomposition-based
retraction map. Given matricesX,Q ∈ St(p, n), if there exists
an upper-triangular matrixR with strictly positive elements on
its main diagonal such thatQR −X ∈ TXSt(p, n), then the
lifting map P−1

X can be represented by:

P−1
X (Q) = QR−X. (10)

Then× n matrix R must satisfy the condition:

XT (QR−X) + (QR−X)TX = 0. (11)

Namely, the matrixR may be calculated by solving the linear
system ofn(n+1)

2 independent equations:

MR+RTMT = 2In, (12)
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whereM
def
=XTQ is known. Note that whenX = Q, it holds

thatM = In, hence the equation (12) reduces toR + RT =
2In. As the matrixR is upper-triangular, the last condition
implies thatR = In. As the retractionP−1

X (Q) exists forQ =
X and as any entryrij computes as a rational function of the
elementsmij , by continuity it must exist in a neighbourhood
of matrixX .

The (i, j)th entry of the linear system (12) reads:

j
∑

k=1

mikrkj +

i
∑

k=1

mjkrki = 2δij , (13)

where the symbolδij represents the ‘Kronecker delta’. It is
immediate to verify that exchanging the indexi with the index
j in the above equation yields the same equation, hence, the
values of the indices may be restricted toi = 1, 2, . . . , n and
j = 1, 2, . . . , i. Define:

• The matrixM̃i as theith principal minor extracted from

the matrixM , namely:M̃i
def
=







m11 · · · m1i

...
.. .

...
mi1 · · · mii






.

• The vectorr̃i as the column-vector formed by the first
i elements of theith column of the matrixR, namely:
r̃i

def
= [r1i · · · rii]

T .
• The vectorbi as the column vector whosejth element

equals−[mi1 mi2 · · · mij ]r̃j , for j = 1, 2, . . . , i − 1,
while its ith entry equals1.

Then, the equations (12) may be rearranged as follows: For
any value of the indexi ranging from1 to n, the unknown
vector r̃i may be found by solving the linear system:

M̃ir̃i = bi. (14)

Consistency of the solution requires not only thatdet(M̃i) 6=
0, but also thatrii > 0. Note that, for a given value of the index
i, the right-hand termbi depends only on the vectors̃rj with
j < i. The procedure to calculate the thin-QR-decomposition-
based liftingP−1

X (Q) is outlined in the Algorithm 1. If the
procedure stops before its natural end, then the matrixQ does
not belong to the domain of definition of the lifting mapP−1

X .
An alternative way to compute the solution of the equation

(12) would be to recast it as a linear system of the form
Avec(R) = 2vec(In), where the matrixA is written in terms
of Kronecker products of appropriate matrices. Such a method
was employed to conduct the numerical tests presented in the
conference paper [27], [28] but it was found to be numerically
far more expensive than the one presented in the Algorithm 1
and hence soon abandoned in favour of the latter one.

On the basis of the thin-QR-type retraction map and of its
associated lifting map, the fixed-point iteration algorithm (8)
may be particularized to:

X(i+1) = qf

(

α

N
∑

k=1

XkRk(X
(i)) + (1−Nα)X(i)

)

, i ≥ 0,

(15)
where matrixX(0) ∈ St(p, n) denotes an initial guess and
the notationRk(X

(i)) emphasizes the fact that the upper-
triangular matrixRk depends on the current estimateX(i)

via the condition (11).

Algorithm 1 Procedure to calculate the thin-QR-
decomposition-based lifting mapP−1

X .

Given matricesX andQ, computeM = XTQ
if m11 > 0 then

Set r̃1 = 1
m11

else
Stop

end if
Set i = 2
repeat

SetM̃i to the ith principal minor extracted fromM
if det(M̃i) 6= 0 then

Set bi as the column-vector whosejth entry equals
−[mi1 mi2 · · · mij ]r̃j , for j = 1, 2, . . . , i − 1, while
its ith entry equals1
Computer̃i = M̃−1

i bi
else

Stop
end if
if (r̃i)i ≤ 0 then

Stop
end if
Set i = i+ 1

until i > n
Construct the matrixR from the vectors̃ri
Compute the lifting mapP−1

X (Q) asQR−X

2) Polar-decomposition-based retraction map and its asso-
ciated lifting map:Given a real-valuedp×nmatrixA, its polar
decomposition is written asA = QS, whereQ is a matrix
in St(p, n) termedpolar factor of A, hereafter denoted by
Q = pf(A), andS is a symmetric positive-semidefiniten×n
matrix [26]. The polar decomposition of a matrix always exists
and if the matrix is full rank, then its polar factor is unique.
Given a pointX ∈ St(p, n) and a vectorV ∈ TXSt(p, n), the
polar-decomposition retraction on the Stiefel manifold may be
written as [1]:

PX(V )
def
=pf(X + V ). (16)

Under appropriate conditions, the polar-decomposition retrac-
tion may be written in closed form. In fact, writeX+V = QS.
From the conditionsQTQ = In andST = S, it follows that:

(X + V )T (X + V ) = STQTQS ⇒

XTX +XTV + V TX + V TV = S2.

Now, it holds thatXTX = In andXTV + V TX = 0, and it
may be readily verified that the matrixIn +V TV is positive-
definite, henceS = (In + V TV )

1
2 . From the equalityX +

V = QS, the following closed-form expression for the polar-
decomposition-based retraction is obtained:

PX(V ) = (X + V )(In + V TV )−
1
2 . (17)

A possible lifting map associated to the polar-
decomposition-based-retraction (16) is proposed in the
present paper on the basis of the following considerations.
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Algorithm 2 Procedure to calculate the polar-decomposition-
based lifting mapP−1

X .

Given matricesX andQ, computeM = XTQ
Solve the CARE(−M)S + S(−MT ) + 2In = 0 for S
Compute the lifting mapP−1

X (Q) asQS −X

Given matricesQ,X ∈ St(p, n), the lifting map associated to
the retraction map (16) may be computed as:

P−1
X (Q) = QS −X, (18)

provided that there exists a symmetric positive-semidefinite
n×n matrixS such thatQS−X ∈ TXSt(p, n). The tangency
condition reads(QS −X)TX +XT (QS −X) = 0. Setting

M
def
=XTQ, the above condition becomes:

(−M)S + S(−MT ) + 2In = 0. (19)

When X = Q, it holds thatM = In, hence the equation
(19) reduces to2S = 2In. As the retractionP−1

X (Q) exists
for Q = X and as any entrysij computes as a rational
function of the elementsmij , by continuity it must exist in
a neighbourhood ofX . The equation (19) is linear in the
unknownS and represents a special case of the CARE (6).

The procedure to calculate the polar-decomposition-based
lifting P−1

X (Q) is outlined in the Algorithm 2. If the CARE
does not admit any solution, then the matrixQ does not belong
to the domain of definition of the lifting mapP−1

X .
On the basis of the polar-decomposition-based retraction

map and of its associated lifting map, the fixed-point iteration
algorithm (8) may be particularized to:

X(i+1) = pf

(

α

N
∑

k=1

XkSk(X
(i)) + (1−Nα)X(i)

)

, i ≥ 0,

(20)
where matrixX(0) ∈ St(p, n) denotes an initial guess and
the notationSk(X

(i)) emphasizes the fact that the symmetric
positive-semidefinite matrixSk depends on the current esti-
mateX(i).

An alternative solution to the problem of computing the
lifting map associated to the polar-decomposition-based re-
traction, that would avoid solving a CARE sub-problem, is
suggested by the observation that an equation of the form
ESFT +FSET = G = GT has always a symmetric solution
and may be recast as(E ⊗ F + F ⊗ E)vec(S) = vec(G),
where symbol⊗ denotes Kronecker product, as recalled, e.g.,
in the paper [36]. However, it is immediate to verify that such
a solution is extremely expensive from a computational point
of view and we are not about to pursue it.

3) Orthographic retraction map and its associated lifting
map: The paper [2] studiesorthographic retractionson sub-
manifolds of Euclidean spaces. In the paper [2] it is proven
that, given a pair(X,V ) ∈ TSt(p, n), if V is sufficiently
close to0 ∈ TXSt(p, n), then there exists a normal vector
Z ∈ NXSt(p, n) such that:

PX(V )
def
=X + V + Z (21)

b
X

St(p, n)

TXSt(p, n)

NXSt(p, n)

V

Z

b

PX(V )

Fig. 4. Illustration of the notion of orthographic retraction on the manifold
St(p, n) at a point X ∈ St(p, n), with V ∈ TXSt(p, n) and Z ∈
NXSt(p, n).

Algorithm 3 Procedure to calculate the orthographic retraction
PX(V ).

Given matricesX andV , computeM = XTV + In
Solve the CARE−S2 − SM −MTS − V TV = 0 for S
Compute the retraction mapPX(V ) asX(In + S) + V

is a retraction onSt(p, n). Note that the quantitiesX,V, Z
are regarded as elements of the Euclidean spaceR

p×n, hence
their addition makes sense. Such a retraction is illustrated in
Figure 4. From the figure, it is clear that if the tangent vector
V is too large, there might not exist any normal vectorZ
such that the sumX + V + Z ∈ St(p, n). The orthographic
retraction map on the Stiefel manifoldSt(p, n) reads:

PX(V ) = X + V +XS, (22)

provided that there exists an × n symmetric matrixS such
thatV +X(In + S) ∈ St(p, n), namely, such that:

(X + V +XS)T (X + V +XS) = In. (23)

The above equation in the unknown matrixS may be written
in plain form as:

−S2 − S(XTV + In)− (V TX + In)S − V TV = 0. (24)

The equation (24) represents an instance of the Continuous-
time Algebraic Riccati Equation (6), whereF = −XTV −In,
G = In and H = −V TV . The orthographic retraction
map (22) may be computed numerically as shown in the
Algorithm 3. It is worth noting that the explicit expression
of the orthographic retraction map (22) and of the CARE (19)
in terms of the vectorV were not given in paper [2].

In the present paper, it is proposed a possible lifting map
associated to the orthographic retraction map. It reads:

P−1
X (Q) = Q−X −XS, (25)
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for Q ∈ St(p, n) (again thought of as an element of the
Euclidean spaceRp×n), which is well-defined provided that
there exists a symmetricn×n matrixS such thatQ−X(In+
S) ∈ TXSt(p, n). The tangency condition of the lifting map
reads, explicitly:

XT (Q−X −XS) + (Q−X −XS)TX = 0. (26)

The above equation in the unknown matrixS is linear and
admits the explicit solution:

S =
1

2
(QTX +XTQ)− In. (27)

Hence, the orthographic lifting map may be written in closed
form as:

P−1
X (Q) = Q−

1

2
X(QTX +XTQ). (28)

It is worth remarking that the orthographic lifting map is linear
in its argument. The orthographic lifting mapP−1

X may be
derived by applying a projection operatorπX : R

p×n →
TXSt(p, n) into the tangent spaceTXSt(p, n) corresponding
to the Euclidean metric inRp×n [22] to the quantityQ−X .
namely,P−1

X (Q) = πX(Q −X).
The fixed-point averaging algorithm corresponding to the

orthographic retraction/lifting pair reads:










A
def
=α

∑

kXk,
V (i) = A− 1

2X
(i)ATX(i) − 1

2X
(i)(X(i))TA,

X(i+1) = X(i)(In + S(X(i), V (i))) + V (i),

(29)

for i ≥ 0, where the notationS(X(i), V (i)) emphasizes the
fact that the symmetric factorS depends on the current iterate
X(i) and the tangent vectorV (i).

B. Fixed-point arithmetic averaging algorithms onSt(p, n)
via a Lie-group action

The special orthogonal groupSO(p) acts on the Stiefel
manifold St(p, n) via pre-multiplication. Namely, ifG ∈
SO(p) and X ∈ St(p, n), then GX ∈ St(p, n). The pre-
multiplication-based action may be exploited to design a
retraction map for the Stiefel manifold, as it was suggested
in [11] and subsequently applied to optimization problems on
the Stiefel manifold in [12]. Such a result may be summarized
as follows. Define:

• A coordinate mapψ : so(p) → SO(p) such thatψ(0) =
Ip.

• A function ρX : so(p) → TXSt(p, n), defined by

ρX(U)
def
= d

dt
(tU)X

∣

∣

t=0
.

• A linear map aX : TXSt(p, n) → so(p) such that
ρX(aX(V )) = V for anyV ∈ TXSt(p, n).

Then, a retractionPX which is a map fromTXSt(p, n) to
St(p, n) is given by:

PX(V ) = ψ(aX(V ))X = ψ(Ω)X, Ω
def
= aX(V ) ∈ so(p).

(30)
A key observation is that, in the present context, it is not
necessary to utilize the full retractionPX as it is sufficient to

use the coordinate map combined with the special-orthogonal-
group action and its inverse to parametrize Stiefel manifold
matrices and tangent vectors to the Stiefel manifold.

In the following subsections, we introduce the notions of
pseudo-retractionandpseudo-liftingmaps and investigate two
instances of such maps.

1) Cayley-type retraction/lifting pair:A difficulty related
to the retraction (30) in the present context is that there are
no known results about its inversion. A result published in the
paper [23] that partially overcomes such a difficulty concerns
the specific case that the retraction (30) is used to parametrize
matrices in a neighbourhood of the matrix[In 0]T ∈ St(p, n)
and that the coordinate mapψ is chosen as the Cayley map
Cay : so(p) → SO(p) defined by:

Cay(Ω)
def
=(Ip +Ω)(Ip −Ω)−1 = (Ip −Ω)−1(Ip +Ω). (31)

The fundamental limitation that the retraction be used in a
neighbourhood of the matrix[In 0]T ∈ St(p, n) is due to the
fact that the domain of the coordinate mapψ is restricted in
[23] to the setW of the skew-symmetric matrices with block
structure:

Ω =

[

A −BT

B 0

]

, (32)

where A is a n × n skew-symmetric matrix andB is an
arbitrary (p − n) × n matrix, where the dimension of the
spaceW is calculated asdimW = pn − n(n+1)

2 . The paper
[23] makes, thus, use of apseudo-retraction map̂PX : W →
St(p, n) defined by:

P̂X(Ω)
def
=Cay(Ω)X. (33)

The associatedpseudo-lifting mapP̂−1
X returns a skew-

symmetric matrix of the type (32), with:

A = 2(XT
u +QT

u )
−1sk(QT

uXu +XT
l Ql)(Xu +Qu)

−1,

B = (Ql −Xl)(Xu +Qu)
−1,

where sk(M)
def
= 1

2 (M
T −M) for an arbitrary square matrix

M and the following block-partitions were made use of:

X =

[

Xu

Xl

]

∈ St(p, n) andQ =

[

Qu

Ql

]

∈ St(p, n), with

Xu, Qu ∈ R
n×n andXl, Ql ∈ R

(p−n)×n, provided that the
matrix Xu + Qu be nonsingular. Note that, whenX = Q, it
holds thatQT

uXu+X
T
l Ql = 2In, whose skew-symmetric part

is zero, hence, it holds thatA = 0 andB = 0. As the retraction
P−1
X (Q) exists forQ = X and as any entry of matricesA and
B computes as a rational function of the entries of matrices
Xu, Qu, Xl, Ql, by continuity it must exist in a neighbourhood
of the matrixX .

2) Proposed full-Cayley retraction/lifting pair: In the
present paper, it is proposed that a full parametrization of
the algebraso(p) be used instead of the block structure
(32). In this case, the retraction map takes again the form
P̂X(Ω) = Cay(Ω)X but now Ω ∈ so(p). The calculation
of the pseudo-lifting mapP̂−1

X implies the solution of the
equationQ = P̂X(Ω) for Ω ∈ so(p) for Q,X ∈ St(p, n)
given, or, equivalently, of the equation(Ip−Ω)−1(Ip+Ω)X =
Q. Rearranging terms, the latter equation may be written as:

Ω(Q+X) = Q−X. (34)
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There appear to be no known closed-form solutions of equa-
tions of the type (34). It is to be noted that the equation (34)
does not possess a unique solution, in general. A closed-form
solution to the problem (34) was found in the special case that
the dimension indexn is an even number. Recall the following
preliminary facts about skew-symmetric matrices:

• Any skew-symmetric matrix of odd size is not invertible
(as a consequence of Jacobi’s Theorem [17]).

• If a skew-symmetric matrixΩ is invertible, its inverse
is also skew-symmetric, in fact(Ω−1)T = (ΩT )−1 =
(−Ω)−1 = −Ω−1.

In the case that a Stiefel manifoldSt(p, n) with n being an
even number is considered, a possible closed-form solutionto
the problem (34) may be found as follows. The sought-for
skew symmetric matrix may be written by theansatz:

Ω = Z(Q−X)T , (35)

with Z of size p × n unknown. Substituting equation (35)
in equation (34) yieldsQ − X = Z(Q − X)T (Q + X) =
Z(QTX −XTQ). If the n × n matrix sk(XTQ) is nonsin-
gular, thenZ = 1

2 (Q − X)sk−1(XTQ). Replacing such an
expression forZ in equation (35) gives the final result:

P̂−1
X (Q) =

1

2
(Q−X)sk−1(XTQ)(Q −X)T . (36)

It is straightforward to check that(Q −X)sk−1(XTQ)(Q −
X)T is skew-symmetric and thatPX(P−1

X (Q)) = Q. The
above setting may be referred to asfull-Cayley pseudo-
retraction/lifting case.

3) Averaging algorithm based on the Cayley map:The
averaging algorithm related to the use of a Cayley-map-based
retraction, and of its associated lifting map, may be outlined
as follows:

1) ComputeN matricesΩk by means of the pseudo-lifting
map P̂−1

X (Xk).
2) Compute a linear combination of the obtained skew-

symmetric matricesΩ = α
∑N

k=1 Ωk, with α > 0.
3) The empirical mean matrix must then satisfy the condi-

tion X = P̂X(Ω).

Note that the matricesΩk, and hence their linear combination
Ω, depend on the matrixX . The above procedure is illustrated
in Figure 5. The empirical mean matrixX is, thus, the solution
of the non-linear, matrix-type equation:

X =

(

Ip + α

N
∑

k=1

P̂−1
X (Xk)

)(

Ip − α

N
∑

k=1

P̂−1
X (Xk)

)−1

X.

(37)
Note that a matrixX can be a solution of the equation (37)
only if there exists a matrixΩ ∈ W or so(p) such thatX =
(Ip − αΩ)

−1
(Ip + αΩ)X , that is equivalent toΩX = 0.

In general, the equation (37) cannot be solved in closed
form, hence, it is necessary to resort to an iterative algorithm
to seek for its solution. In particular, in the present manuscript,
a sequenceX(i) ∈ St(p, n) of increasingly refined estimates
of the empirical mean matrix of a given set of sample is
sought for via a fixed-point algorithm with initial guessX(0) ∈

Fig. 5. Averaging over the Stiefel manifold via special-orthogonal-group
action and the Cayley map. The dots (•) denote sample matrices and the
box symbol (2) denotes their empirical average matrix. SymbolP̂X denotes
a pseudo-retraction map while symbolP̂−1

X
denotes its associated pseudo-

lifting map.

Algorithm 4 Fixed-point averaging algorithm resulting from
the pseudo-retraction map introduced in [23].

Input matricesXk ∈ St(p, n), k = 1, . . . , N andX(0) ∈
St(p, n) and number of iterationsI
for i = 0 to I do

Define the block-partitionX(i) =

[

X
(i)
u

X
(i)
l

]

with X(i)
u ∈

R
n×n, X(i)

l ∈ R
(p−n)×n

for k = 1 to N do

Define the block-partitionXk =

[

Xu,k

Xl,k

]

with

Xu,k ∈ R
n×n, Xl,k ∈ R

(p−n)×n

if det(X
(i)
u +Xu,k) = 0 then

Stop
end if
Compute matrixL(i)

k = (X
(i)
u +Xu,k)

−1

Compute matrixA(i)
k = 2(L

(i)
k )T sk(XT

u,kX
(i)
u +

(X
(i)
l )TXl,k)L

(i)
k

Compute matrixB(i)
k = (Xl,k −X

(i)
l )L

(i)
k

Construct matrixΩ(i)
k =

[

A
(i)
k −(B

(i)
k )T

B
(i)
k 0

]

end for
Compute matrixΓ(i) =

∑N

k=1 Ω
(i)
k

UpdateX(i+1) =
(

Ip + αΓ(i)
) (

Ip − αΓ(i)
)−1

X(i)

end for

St(p, n):

X(i+1) = Cay

(

α

N
∑

k=1

P̂−1
X(i)(Xk)

)

X(i). (38)

The fixed-point algorithm resulting from the pseudo-retraction
map introduced in the paper [23] is illustrated in the Al-
gorithm 4, while the iterative algorithm resulting from the
application of the full-Cayley setting is explained in the Algo-
rithm 5. For the Algorithm 4, it is assumed that all the matrices
Xk andX(0) lay in a sufficiently narrow neighbourhood of
the point[In 0]T , while such a limitation is not present in the
Algorithm 5.
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Algorithm 5 Fixed-point averaging algorithm onSt(p, n),
with n even, resulting from the full-Cayley pseudo-retraction
map.

Input matricesXk ∈ St(p, n), k = 1, . . . , N andX(0) ∈
St(p, n) and number of iterationsI
for i = 0 to I do

for k = 1 to N do
if det(sk((X(i))TXk)) = 0 then

Stop
end if
ComputeΩ(i)

k = 1
2 (Xk−X

(i))sk−1((X(i))TXk)(Xk−
X(i))T

end for
Compute matrixΓ(i) =

∑N

k=1 Ω
(i)
k

UpdateX(i+1) =
(

Ip + αΓ(i)
) (

Ip − αΓ(i)
)−1

X(i)

end for

C. Relationships with other averaging methods

The fundamental equation (7) that defines an average matrix
on the compact Stiefel manifold may be regarded as an
extension of the Kolmogoroff-Nagumo averaging rule for real
numbers (for a recent discussion see, e.g., [33]) and may be
used to compute averages on other manifolds of interest. In
particular, it may be applied to the manifoldRp×n. Given
matricesX,Q ∈ R

p×n and V ∈ TXR
p×n ∼= R

p×n, a
retraction/lifting pair may be taken asPX(V ) = X + V and
P−1
X (Q) = Q − X . Then, the fundamental equation would

read:

X = X + α

N
∑

k=1

(Xk −X), (39)

whose solution is the well-known Pythagoras’ mean matrix
Xpa:

Xpa
def
=

1

N

N
∑

k=1

Xk. (40)

It is worth noting that the solution does not depend on the
value of the coefficientα 6= 0. The fundamental equation (7)
may be read as Pythagoras’ mean rephrased in the language
of manifolds.

Naive (or extrinsic) averaging consists in computing a linear
combination of the availableSt(p, n) samples, thought of
as elements of the linear matrix spaceRp×n followed by a
projection of the result onto the manifoldSt(p, n). The linear
combination ofN samplesXk ∈ St(p, n) may be denoted as
α
∑

kXk (whereα = 1/N would correspond to arithmetic
average on the spaceRp×n). A theoretical foundation of such
an approach for another manifold of interest (namely, the
manifold of symplectic matrices) was explained in the paper
[20]. To what concerns the Stiefel manifold, it should be noted
that the method described in the section II-B.3 essentially
implements such a naive approach. From the equations (29),
that describe in details the orthographic retraction/lifting pair-
based averaging method, it is readily seen that the matrix
A is computed as a linear combination of the available

St(p, n)-samples and that the method implements the required
projection.

It is also worth discussing the relationship between the
averaging method proposed in the present contribution with
Maximum Likelihoodestimation of the parameters of statistical
distributions defined on the Stiefel manifold, as described
in detail in the book [14]. The approach followed in the
present paper is different from an approach based on maximum
likelihood estimation. Maximum likelihood estimation is based
on hypothesizing a probability model for the data, which
includes some parameters, and in finding the optimal values of
the parameters in a maximum-likelihood sense. In the present
paper, no hypotheses are made about the distributional proper-
ties of the samples (except that the distribution is concentrated
around a center of mass).

A well-known averaging theory is that ofKarcher mean
[29]. Karcher mean is based on the optimization on a criterion
function, which in turn is written in terms of geodesic distance
between the samples and the sought-for mean. Such a con-
struction basically extends in a geometrically-sound way the
definition of sample average over a flat space as the point that
is as close as possible to the samples altogether. Most of the
works on the subject available in the literature are concerned
with the minimization of such a criterion function by a
gradient-steepest-descent methods and on the individuation of
the conditions under which such methods converge. Some re-
cent works also consider alternative methods, such as Newton
optimization, conjugate gradient or stochastic optimization.
The method proposed in this paper does not rely on any
criterion function and on any gradient-based-like optimization
method but is completely different in nature. It is based on a
characterization of the average in terms of arithmetic average
on a tangent space, which leads in a natural way to a fixed-
point implementation.

III. N UMERICAL RESULTS

The present section illustrates the numerical behavior of the
discussed retraction/lifting map-pairs in the context of averag-
ing over the Stiefel manifold. The discussed retraction/lifting
map-pairs are summarized in the Table I, along with their
principal features.

In the numerical experiments, the center of the distribution
C ∈ St(p, n) is generated by computing the Q-factor of a thin-
QR decomposition of a matrix randomly generated inR

p×n

with normally-distributed entries. TheN samples to average
are generated by the rule

Xk = exp(aΩk)C, (41)

with Ωk
def
=sk(Ak), withAk being a matrix randomly generated

in R
p×p with normally-distributed entries,a > 0 controls the

spread of the distribution around the center andk = 1, . . . , N .
The initial guessX(0) may be chosen near one of the

available samples. In the present simulations, the initialguess
was chosen by slightly rotating the sampleX1 via a quasi-unit
random rotation.

In order to inspect the behavior of the proposed algorithms,
the following measure of discrepancyδ : St(p, n)×St(p, n) →
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TABLE I

RETRACTION/LIFTING MAP -PAIRS, DISCUSSED INSECTION II, ALONG WITH THEIR PRINCIPAL FEATURES.

Retraction/lifting on St(p, n) Features
QR-decomposition The lifting map may be computed efficiently by solving linearsystems in an appropriate order.

Polar decomposition The retraction map may be expressed in closed form. The lifting map may be computed by
solving a CARE.

Orthographic The retraction map may be computed by solving a CARE. The lifting map may be expressed
in closed form. The resulting averaging algorithm is an instance of ‘naive’ averaging.

Cayley-type Both the pseudo-retraction map and the pseudo-lifting map may be expressed in closed form.
The resulting averaging algorithm is well-defined only in a neighborhood of the matrix[In 0]T .

Full-Cayley-type Both the pseudo-retraction map and the pseudo-lifting map may be expressed in closed form.
The resulting averaging algorithm is well-defined only forn even.

R
+
0 between two Stiefel-manifold matrices is made use of:

δ(X,Y )
def
= ‖In −XTY ‖F, (42)

where ‖ · ‖F denotes the Frobenius norm. Note that for
every X,Y ∈ St(p, n), it holds that δ(X,X) = 0 and
δ(X,Y ) = δ(Y,X). It may be used to measure the discrep-
ancy between two successive steps of the algorithm, computed
as δ(X(i), X(i+1)), and the discrepancy between the current
estimate and the actual center of the distribution, namely
δ(X(i), C).

A. Tests on learning stepsize

In order to determine a learning stepsizeα for the learning
algorithms, a number of numerical tests was performed. In
particular, the following values were tested:1

N
, 1

2N and 1
4N .

The result of extensive numerical simulations is that there
are no real advantages in choosing a value different from the
theoretically-optimal oneα = 1

N
. Such a value corresponds

to arithmetic averaging over tangent spaces and makes the
learning equations take the simplest form.

Although, in principle, variable stepsize schedules might
be devised, in the present paper such a possibility was not
exploited in order to keep the computational burden limited.

B. Single trials and comparisons

The Figure 6 is about averaging on the sphereSt(3, 1),
for which is it possible to provide a graphical rendering of
the result. Such a numerical simulation was performed with
N = 30 samples, generated with a spread valuea = 0.3, and
was performed by using the QR-retraction-based averaging
algorithm. The Figure 6 gives a quick picture of the meaning
of the developed learning theory on curved manifolds.

The following experiment is about averaging over the
manifold St(20, 4). For this experiment, a numberN =
30 of samples were generated with a spread parameter
a = 0.01. The Figure 7 shows the values of the index
δ(X(i), C), while the Figure 8 shows the values of the
index δ(X(i), X(i+1)). The two pictures compare the be-
havior of the QR-decomposition-based-retraction algorithm,
the Polar-decomposition-based-retraction averaging algorithm,
the Cayley- and the full-Cayley-pseudo-retraction-basedalgo-
rithms and the Orthographic-retraction-based algorithm.In the
present experiment, all the algorithms behave satisfactorily and
converge to solution-matrices with similar discrepancieswith

-1

-0.5
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0.5

1

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

Fig. 6. Experiment about averaging on the sphereSt(3, 1). The samples to
average are denoted by cross marks (×), the actual center of the distribution is
denoted by a diamond mark (⋄) and the computed empirical mean is denoted
by a box symbol (2).

the actual center of the distribution. It is to be noted that
the Cayley-pseudo-retraction-based algorithm is the slowest
to converge, due to the limitations explained in the sec-
tion II-B. The QR-decomposition, Orthographic and Polar-
decomposition retraction/lifting based algorithms converge the
fastest.

The Figure 9 shows a result of averaging real-world sam-
ples over the manifoldSt(5, 2). The N = 50 samples
to average were obtained by running a fastICA algorithm
[15], which separates2 independent source signals out of5
mixtures, on50 independent trials on the same separation
problem. The Figure 9 illustrates the obtained results, ex-
pressed in terms of separation performance index (PI) [15].
Again the QR-decomposition-based-retraction algorithm,the
Polar-decomposition-based-retraction averaging algorithm, the
Cayley- and the full-Cayley-pseudo-retraction algorithms and
the Orthographic-retraction-based algorithm were tested. As
they behave similarly about final performance after iteration,
the average value of the5 separation indices was retained as
a good representative of their collective behavior. The figure
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Fig. 7. Experiment about averaging on the manifoldSt(20, 4). Index
δ(X(i) , C) during iteration.
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Fig. 8. Experiment about averaging on the manifoldSt(20, 4). Index
δ(X(i) ,X(i+1)) during iteration.

shows that the value of the PI corresponding to the empirical
average matrix collocates in an average position with respect
to the PI values of the single samples.

C. Computational-complexity evaluation

The Figure 10 shows the runtimes corresponding to the
five tested algorithms run on the manifoldSt(100, n) with
n varying. Such a numerical simulation was performed with
N = 50 samples generated with a spread-parameter value
a = 0.01. Each averaging experiment for each value of
the indexn was repeated100 times to get rid of random
fluctuations in the evaluation of runtimes. The obtained results
allow the conclusion that for low-dimensional problems, i.e.,
for n ≤ 20, the Orthographic retraction based method is the
lightest in terms of computational burden, while for larger-
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Fig. 9. Result of averaging over the manifoldSt(5, 2) on real-world fastICA
samples. The bars show the values of the separation performance index (PI)
pertaining to each sample, while the horizontal line indicates the average
PI corresponding to the average separation matrix computedby the 5 tested
algorithms on the same data-set.
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Fig. 10. Figure about runtimes for the manifoldSt(100, n) with n varying.

sized problems, the Cayley and full-Cayley pseudo-retraction
based algorithms are preferable.

D. Consistency of the estimation

In order to get some insights into the consistency of the
devised averaging method, some numerical experiments were
performed by varying the number of available samples and by
varying the spread of the distribution of the samples to average
around a given center of mass.

The Figure 11 shows the results of averaging obtained by
varying the number of available samples, while the spread
parameter was fixed toa = 0.03. The curves shown in the
Figure 11 are the average result of5 independent trials over the
manifoldSt(20, 4) obtained by each method corresponding to
the different retraction/lifting pairs discussed in the Section II.
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Fig. 11. Results of averaging obtained by varying the numberN of available
samples from10 to 105 with log-step10. The number of iterations for each
algorithm was set to15.

The obtained numerical results show that the discrepancy
between the computed empirical arithmetic average and the
actual center of the distribution decreases when the numberof
available samples increases, which confirms numerically the
consistency of the proposed averaging method.

The Figure 12 shows the results of averaging obtained by
varying the spread of the distribution of the samples, while
the number of available samples was fixed toN = 100. The
curves shown in the Figure 12 are the average result of100
independent trials over the manifoldSt(20, 4) by each method
corresponding to the retraction/lifting pairs discussed in the
Section II. Note that the Polar-decomposition method and the
QR-decomposition method (whose curves look superimposed
in the Figure 12) eventually become unstable (arounda = 0.2).
The Orthographic-based method proves to be the most robust
with respect to the spread of the distribution.

IV. CONCLUSIONS

The present research work extends the algorithm introduced
in [21] to compute averages over Lie groups to the compact
Stiefel manifold. The present method inherits the main advan-
tage of the previous method, namely, it does not involve any
metrics and is hence more general than the Riemannian mean
method.

The idea underlying the developed algorithms is that points
on the Stiefel manifold get mapped onto a specific tangent
space, where the average is taken, and then the average point
on the tangent space is brought back to the Stiefel manifold.
The switching of points from/to the manifold to/from the
tangent bundle is performed by the help of a retraction/lifting
maps pair (or pseudo-retraction/pseudo-lifting maps pairs),
customized to the case of the Stiefel manifold. In particular,
four different retraction (or pseudo-retraction) maps were
recalled from the literature, namely, the retraction map based
on the thin-QR-decomposition, the retraction map based on the
polar decomposition, the retraction map based on orthographic
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Fig. 12. Results of averaging obtained by varying the spreada of the
distribution of the samples from0.01 to 0.5 with step 0.01. The number
of iterations for each algorithm was set to15.

projection and the pseudo-retraction map based on the action
of the special orthogonal group on the Stiefel manifold,
when the Cayley map is used as a retraction on the special
orthogonal group of matrices. The problem of calculating
the associated lifting (or pseudo-lifting) maps was addressed
both from a theoretical viewpoint and from an implementation
viewpoint. The main aim of the submitted paper was to find
ways to calculate the lifting maps associated to the mentioned
retraction maps. Such calculations were the major source of
difficulty and of necessary research work.

The Stiefel matrix calculated by means of the proposed
method may be defined as ‘average matrix’ because it corre-
sponds, via appropriate applications of retraction/lifting maps,
to the Pythagoras’ arithmetic average calculated over a flat
space, which is a tangent space at a specific point to the
Stiefel manifold. In other terms, the average over the tangent
space corresponds to the average over the manifold upon non-
linear transforms, which makes the found matrix be an average
Stiefel matrix.

Numerical experimental results were shown and commented
on in order to illustrate the numerical behavior of the proposed
procedure. The obtained results confirm that the developed al-
gorithms converge steadily and in a few iterations and that they
are able to cope with relatively large-size problems with no
significant numerical errors. In particular, a comparison based
on convergence features and computational complexity figures
allows concluding that the full-Cayley pseudo-retractionbased
algorithm and the Orthographic-projection-based method offer
the best trade-off between convergence speed, computational
burden and robustness.

Some topics related to the present research emerged that
should be pursued in the future:

• Study analytically the convergence properties of the fixed-
point averaging algorithm, possibly in conjunction with a
variable stepsize schedule selection rule. Such an analysis
could benefit of some recent works on the convergence
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of fixed-point algorithms on certain manifolds as summa-
rized, e.g., in the paper [32].

• Seek for a more general solution to the equation (34)
to compute the lifting map associated to the full-Cayley-
transform.

• Take into account the ‘Mostow decomposition’ [6] to
design a further retraction/lifting pair for the Stiefel
manifold.

• The proposed averaging method is based on arithmetic
averaging a tangent space, which is a linear space.
The proposed method may be generalized by invoking
different kinds of averaging over a linear space on the
basis of different distance measures (or, more generally,
divergences) over linear spaces. A noteworthy class of
divergences is given by Bregman theory, that was used
to define averages over a hypersphere in [18] and used
to define averages on subsets ofR

n in [35].

Further efforts will be directed along the line of seeking more
general schemes to compute averages over the Grassmann
manifold and the ‘flag manifold’.
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