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Abstract

Since the pioneering work of Amari and Oja, principal component neu-

ral networks and their extensions have become an active adaptive signal

processing research �eld. One of such extensions is minor component

analysis (MCA), that proves to be e�ective in problems such as robust

curve/surface �tting and noise reduction. The aims of this paper are to

give a detailed and homogeneous review of one-unit �rst minor/principal

component analysis and to propose an application to robust constrained

beamforming. In particular, after a careful presentation of �rst/minor

component analysis algorithms based on a single adaptive neuron, along

with relevant convergence/steady-state theorems, it is shown how the

adaptive robust constrained beamforming constrained theory by Cox et

al. may be advantageously recast into an MCA seeting. Experimental

results performed on a triangular array of microphones introduced in a

teleconference context helps assessing the usefulness of the proposed the-

ory.

Keywords: Arti�cial neural systems; Minor component analysis; Adap-

tive beamforming; Microphone array; Robust/constrained beamforming.
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1 Introduction

Adaptive principal component analysis (PCA) by neural networks is a statistical

signal processing technique, extensively investigated by Oja [40, 41, 42], which

allows for extracting second-order features from a given random signal or a

data-stream.

Likely, one of the reasons of the success of the neural PCA theory is its use-

fulness for solving many signal processing problems, as illustrated for instance

in [17, 29, 37] and references therein, where extracting the �rst principal com-

ponents is shown to be of prime importance. Nevertheless, it has been clearly

shown that computing the last principal components of a data sequence, i.e.

those principal components endowed with the smallest (non-zero) powers, may

be very useful as well, for instance in moving target following [36], frequency

estimation [39], adaptive array processing, emitter location and signal param-

eter estimation [48], biological data analysis and understanding [50], and noise

reduction problems and function approximation like curve and surface �tting

[3, 52]. The extraction of the last principal components is usually referred to as

minor component analysis (MCA).

In this paper we consider the MCA learning rule proposed in [42] that allows

to extract the �rst minor component from a stationary multivariate random pro-

cess; we refer to Oja's work also because his formulation, based on the de�nition

of a cost function to be minimized under right constraints, is very clear and al-

lows us to penetrate the mathematical structure of the learning algorithmwhich

we treat as a (non-linear, coupled) dynamical system to study. We �rst recall

some preliminary results on �rst principal component analysis and pay special

attention to the mathematical structure of FPCA learning system and to its

convergence properties. Then we show that the direct extension of Oja's �rst

principal component analysis rule to a �rst minor component analysis (FMCA)

one is not possible, as the obtained learning algorithm comes unstable. Then we

recall from [43] a simple but very interesting method for making this learning

algorithm be stable, and formally prove that the stabilization theory is e�ective.

In the present contribution we present an application of FMCA to robust

constrained beamforming.

Beamformers are frequently employed in acoustic applications to locate acous-

tic sources by microphone arrays without physical array-steering. Two or more

microphones spaced apart form a microphone array. Such array, together with

an adaptive beamforming program, can be used to implement a powerful di-

rectional listening device. Microphone array beamforming in acoustic systems

relies on directionality to separate the desired speech from interfering noises. In
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acoustic beamforming, sounds coming from the direction of the speaking person

are ampli�ed, while sounds and disturbances coming from other directions are

attenuated. For steady-state noises whose characteristics di�er from speech,

such as computer fan noise, air conditioner noise, automobile engine and road

noise, it is possible to separate speech and attenuate noise using only one micro-

phone. With the noise changing relatively to the speech, adaptive microphone

array beamforming can be employed to enhance the speech signal. The system

requires multiple analog-to-digital converters, one for each microphone.

Among other signal processing techniques, delay-and-sum beamformers have

long been used to locate signal sources: As others steered beamformer based

locators, delay-and-sum beamformers scan the area-of-interest with a beam in

order to �nd the sector of space which yields the highest beam output power.

However, the use of the delay-and-sum beamformers in conjunction to tradi-

tional analog-to-digital converters results in a memory intensive implementation

and therefore it has been widely replaced by other beamforming algorithms.

Beamforming systems can be used to reduce noise in hearing aids, in tele-

conferencing systems, in hands-free microphones in automobiles and computer

terminals, for speaker phones and speech recognition systems.

In teleconferencing systems, microphone arrays endowed with a beamforming

algorithm provide a means for determining the point of sound origin: Speaker

coordinates may be used to direct a camera at a member of an audience during

a question-and-answer session, and can also provide directed sound capturing,

thus a microphone array system may be used to eliminate the need for a human

camera operator in an auditorium or conference hall environment.

In the present paper, we recall the microphone-array beamforming prob-

lem formulation of Cox et al. [14, 15] and show that it closely resembles an

MCA optimization problem. On the basis of this �nding, the MCA algorithm

considered here is applied to acoustic beamforming problem and its numerical

performances are illustrated.

2 First principal component and �rst minor com-

ponent extraction

Let us consider the stationary multivariate random process x(t) 2 IRp and

suppose it is zero-mean and its covariance matrix � exists bounded; if � is not

diagonal, then the components of x(t) are statistically correlated and it would

be of some use to �nd a linear operator F such that the new random signal

de�ned by y(t)
def
= Fx(t) 2 IRm has uncorrelated components, with m being the
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smallest possible dimension such that y(t) represents x(t) with a representation

error lower than a desired threshold [29, 34, 41, 51]. The operator F is known

to be the matrix formed by the eigenvectors of � corresponding to its largest

eigenvalues [29]. Let �k be the power (eigenvalue) of the k
th component, and let

yi be the element of y(t) that has the greatest power: The yi(t) is termed �rst

principal component of x(t); let yj be the element of y(t) that has the second

greatest power: The yj(t) is termed the second principal component of x(t),

and so on.

Consider now a single linear neural unit. In 1982, Oja [40] proposed to

use this simple neural unit to extract the �rst principal component from the

input, that is to perform �rst principal component analysis (FPCA) of the

input. Since this pioneering work and the previous studies on auto-association

of Amari [2], several new learning algorithms have been proposed for extending

the one-unit neural system to a complete neural network for the extraction of

more than one principal component. Among others, contributions in this �eld

have been given by Sanger [47], who used a on-line version of the well-known

Gram-Schmidt orthogonalization algorithm, Rubner and Tavan [46] and Kung

and Diamantaras [17] that introduced a linear neural network endowed with

lateral inhibitory connections and an additional set of learning equations for

achieving output decorrelation, further developed by the present author [23].

Over recent years, several authors tried to give di�erent rules for generalizing

classical ones. It is worth citing the successive application of modi�ed Hebbian

learning (SAMH) by Abbas and Fahmi [1], who introduced the concept of se-

quential extraction of principal components from previously deated data; the

recursive least square approach (RLS-PCA) by Bannour and Azimi-Sadjadi [5];

the cascade recursive least-squares approach (CRLS) by Cichocki et al. [12],

that combines the advantages of both SAMH and RLS-PCA. A thorough com-

parison of these algorithms and of their performances on di�erent classes of

real-world data has recently appeared in [13].

It is also worth citing the non-linear extensions to PCA by Oja, Karhunen

et al. [21, 33, 34, 49], the recently developed extensions to classical PCA to

its complex-valued counterpart by DeCastro et al. [16] and non-linear complex-

valued counterpart for performing independent component analysis of circularly-

distributed signals by the present author [24, 26].

Consider the linear neural unit described by y(t) = wT (t)x(t), where x 2 IRp

is the input vector, w 2 IRp represents the weight-vector, and y denotes the

neuron's output, as depicted in Figure 1. Let us suppose that this unit is used

for extracting the �rst principal component from the input random signal, that
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Figure 1: An exemplary linear neuron.

is y(t) should represent x(t) in the best way, in the sense that the representation

error Ex[kx�ywk
2jw] should be minimized. Here Ex[�jw] denotes mathematical

expectation with respect to x under the hypothesis w. The problem may be

expressed as:

Solve : min
w2IRp

(Ex[kxk
2]� Ex[y

2jw]) under wTw = 1 : (1)

Note that Ex[kxk
2] does not depend on w, thus we may simply try to maximize

Ex[y
2jw] under the constraint wTw = 1. To this aim the following objective

function may be considered [42]:

J(w)
def
=

1

2
Ex[y

2jw] +
�

2
(wTw � 1) ; (2)

where Ex[y2jw] represents the power of the neuron's output and the additional

term �(wTw � 1) is used for enforcing the constraint wTw = 1 by means of

the Lagrange multiplier �. The gradient of J(w) computed with respect to w

is found to be:
@J

@w
= Ex[yxjw] + �w : (3)

The optimal multiplier �opt may be found by solving the equation wT @J
@w = 0

and recalling that optimality requires kwk2 = 1; this gives:

wT @J

@w
= Ex[y

2jw] + � = 0 ;

that leads to �opt = �Ex[y
2jw]. Now the optimal steepest descent direction at

w looks: �
@J

@w

�opt

= Ex[yxjw]�Ex[y
2jw]w ; (4)

thus we are able to de�ne the steepest descent learning rule:

dw

dt
=

�
@J

@w

�opt

= Ex[yx � y2wjw] ; (5)

that has been found and studied in [40] and discussed by many authors over the

recent years (for a recent review, see e.g. [13]).
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2.1 Convergence analysis of the �rst principal component

analyzer

Let us suppose x(t) to be a zero-mean stationary random process with �nite

covariance; by de�ning the covariance matrix �
def
= Ex[xx

T ], the di�erential

equation (5) rewrites:(
dw(t)
dt = �w(t) � (wT (t)�w(t))w(t) ;

w(0) = w0 :
(6)

This dynamical system has a set of stationary points de�ned by:

E�
def
= fw 2 IRp : �w � �w = 0g : (7)

Except for the trivial solution w = 0, the members w 2 E� coincide to the

eigenvectors of � with eigenvalues �.

Here we aim to prove the following Theorem, presented here in a new slant,

stating the convergence of the system (6) to the eigenvector in E� corresponding

to the largest eigenvalue �. The proof of this Theorem follows the one success-

fully used in [29, 47], and is very helpful to clarify the mathematical methods

involved in the study of neural FPCA learning systems. It is given in Appendix

A.1.

Theorem 1 Suppose � 2 IRp�p is symmetric and positive-de�nite in (6) with

eigenpairs (�1;q1), (�2;q2), . . . , (�p;qp). Suppose further that eigenvalues are

distinct and arranged in descending order, eigenvectors are normalized so that

qTk qk = 1, and wT
0 q1 6= 0. Then there holds:

lim
t!+1w(t) = �q1 :

Note the importance of the condition wT
0 q1 6= 0, that clearly may not be explic-

itly ful�lled. In practice, this problem can be solved by randomly choosing w0;

this makes the condition ful�lled `with probability 1' [29]. Also, note that the

hypothesis that x(t) is stationary may be partially relaxed by allowing instead

the second-order statistics of x(t) to be slowly time-varying, namely � = �(t).

It also deserves to note that equation (26) describes the dynamics of the pseudo-

modes and, in turn, the speed that the principal modes converge with to their

asymptotic values; signi�cantly, the speed is proportional to the di�erences

�h � �1: The larger is the eigenvalues' spread, the faster is neurons' conver-

gence. This quantitative explanation coincides to our intuitive understanding

that the extraction of an eigenvector is easier when the components are well

separated in eigenvalues.
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2.2 First minor component analysis (FMCA) by the FPCA

By de�nition of minor component analysis, we have now to �nd the weight-

vector w that minimizes the power Ex[y
2jw] of the neuron's output. To extend

the above �rst principal component analysis theory to a �rst minor component

analysis theory in such a way is not a straightforward task: Particularly, it is

not possible to replace maximization of the criterion (2) with its minimization,

in that the resulting FMCA learning rule:(
dw
dt

= �
�
@J
@w

�opt
= Ex[�yx + y2wjw] ;

w(0) = w0 ;
(8)

results to be unstable. This result has been discussed in [43, 52]. An alternative

interpretation is given by the following Theorem whose proof �nds in Appendix

A.2.

Theorem 2 Let � 2 IRp�p be a symmetric and positive-de�nite matrix with

eigenpairs (�1;q1), (�2;q2), . . . , (�p;qp). Suppose eigenvalues are distinct and

arranged in descending order, eigenvectors are normalized so that qTk qk = 1, and

wT
0 qp 6= 0. Then solution w(t) to the FMCA equation _w = ��w+(wT�w)w,

w(0) = w0 is de�ned on a maximal interval [0; �t) that cannot be extended further

to the right.

The meaning of result (33) is that, depending on the initial conditions and on

the eigenvalues of the covariance �, the learning rule (8) may diverge, also after

a �nite time-interval.

2.3 Stabilization of FMCA algorithm

In order to overcome the theoretical di�culties introduced by the previous ob-

servations, Oja presented an algorithm that is still based on the same objective

function minimization by a gradient-descent method, but that had a slightly

di�erent structure [42].

Let us consider again the problem of minimizing the cost function:

C(w)
def
=

1

2
Ex[(w

Tx)2jw] +
�

2
(wTw � 1) ; (9)

with respect to the weight vector w. Its gradient has the expression @C
@w =

Ex[yxjw] + �w, thus the optimal multiplier may be found by vanishing wT @C
@w ,

that is by solving: (
wT @C

@w = Ex[y2jw] + �wTw ;

wTw = 1 :
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Now the main point is to recognize that, from an optimization point of view,

the above system is equivalent to:(
wT @C

@w
= Ex[y2jw] + �� ��(wTw � 1) ;

wTw = 1 :

with �� being an arbitrary constant. This way, by computing the optimal mul-

tiplier we obtain the stabilized learning rule S-FMCA:(
dw(t)
dt

= �Ex[y(t)x(t) � y2(t)w(t)jw]� ��[wT (t)w(t) � 1]w(t) ;

w(0) = w0 :
(10)

It is possible to prove that the S-FMCA converges to the expected solution

providing that the constant �� be properly chosen. The results about stabiliza-

tion compactly recast in the following Theorem.

Theorem 3 Let �
def
= Ex[xxT ] be the positive-de�nite covariance matrix of the

random process x(t) in (10) with eigenpairs (�1;q1), . . . , (�p;qp). Suppose

eigenvalues are distinct and arranged in descending order, eigenvectors are nor-

malized so that qTk qk = 1, and wT
0 qp 6= 0. If �� > �1 then the state vector w of

system (10) asymptotically converges towards +qp or �qp.

Proof. System (10) can be rewritten as:

_w = �(� � ��I)w +wT (�� ��I)ww : (11)

Let us de�ne:

��
def
= �(� � ��I) :

The eigenvalues of �� are ��� �p > ����p�1 > � � � > ��� �1 > 0, while its eigen-

vectors coincide to the eigenvectors of �. Thus Theorem 1 applies to system

_w = ��w+(wT ��w)w allowing to conclude that w asymptotically converges to

the last eigenvector qp except for the sign. 2

It is important to note that the Theorem just proven only gives a su�cient

condition for the stability of S-FMCA, not a necessary one. It is also worth

noticing that the introduced stabilization is what is called `origin shift' in the

context of numerical methods for matrix eigenvalue problems, which has been

introduced here by the help of Lagrange multipliers and Kuhn-Tucker theory.

3 Discussion and numerical examples

In the following, some considerations are carried out on the implementation

of FPCA and S-FMCA learning algorithms and on the relationships among the

8



discussed adaptive principal/minor component analysis theory and some related

standard signal processing techniques.

Also, computer simulation results are shown on synthetic signals to numeri-

cally assess the analytical results reported in the previous sections. Particularly,

it is of interest to simulate the behavior of the principal modes both in FPCA

and FMCA rules in order to numerically illustrate the consequences of Theo-

rem 3.

3.1 Practical considerations on implementation

Both FPCA and FMCA algorithms are generally employed under a very real-

istic hypothesis, that is the second-order statistics of the involved signals are

unknown, thus the covariance matrix� is not available and its estimation would

require both an adequate storage capacity and non-negligible computational ef-

forts. Moreover, in most applications non-stationary signals should be dealt

with, thus learning algorithms should be able to continually track covariance

matrix eigenpairs.

In practical computer-based implementations, the discrete-time counterparts

of the above learning equations are necessary. The simplest way for determining

a discrete-time counterpart of learning equations described before is to employ

the standard sampling method, consisting in determining a su�ciently narrow

time-slice where the learning variables are almost stationary, say T , and re-

placing derivative dw=dt with �w=T , where �w = w((n + 1)T ) �w(nT ) and

now n 2 ZZ denotes the discrete-time index; hereafter discrete-time (sampled)

versions of continuous time signal, e.g. x(nT ), will be denotes as x[n]. In this

case we may resort to stochastic adaptation which �nds its roots in sequential

parameter estimation.

Sequential methods for parameter estimation rely on iterative algorithms to

update the values of parameters as new data become available. These methods

play an important role in signal processing and pattern recognition for three

main reasons: 1) They do not require to store a complete data-set since each

datum can be discarded once it has been used, making them very e�cient when

large data volumes are to be handled with; 2) They can be employed for on-

line learning in real-time adaptive circuits; 3) In case of operation under non-

stationary conditions, i.e. when the process that generates the data has slowly-

varying statistical features, the parameters values can continuously adapt and

can therefore track the behavior of the process.

From a more formal viewpoint, the invoked adaptive algorithms may be re-

garded as procedures for �nding the roots of functions which are de�ned stochas-

9



tically. To give an example, let us consider two scalar variables, u and w, which

are correlated; the average of u for each w de�nes a function g(w)
def
= Eu[ujw].

In the hypothesis that several observations of the variable u for a given value of

w are available, we have a set of random values whose average value g, thought

of as a function of w, is usually referred to as regression function. A general

procedure for �nding the roots w? of such function was given by Robbins and

Monro [45], which reads:

w[n+ 1] = w[n] + �nu(w[n]) ;

under fair conditions on u, g and on the sequence of learning step-sizes �n, it

can be proven that the sequence of estimates w[n] converges to one of the roots

w? with probability 1. Such stochastic sequential approximation scheme was

extended to the multidimensional case by Blumm [6]. Also, it is a common

practice to take � constant at a su�ciently small value which ensures good

convergence in a reasonably short time.

The most exploited solution to the mentioned problems thus consists in

invoking the discussed discrete-time stochastic versions of FPCA and FMCA

rules. Within this framework, learning rules (5) and (10) recast, respectively,

into:

�w = �(yx � y2w) ; w(0) = w0 ; (12)

�w = ��(yx � y2w) � ���(wTw � 1)w ; w(0) = w0 ; (13)

which represent the discrete-time stochastic counterpart of FPCA and S-FMCA

rules. These equations may be easily implemented on a digital computer and

exhibit minimal storage/computational requirements.

About stability Theorem 3, we know that the choice �� > �1 ensures the

convergence of S-FMCA rule by the `origin shift' property. Some authors claim

that the origin shift is not so pro�table because it requires the prior knowledge

of the largest eigenvalue. An interesting observation concerning this condition

is that the a-priori knowledge of eigenvalue �1 is not actually required ; in fact

it is possible to choose �� = tr(�) =
P

i �i > �1. It is worth noting that

tr(�) = Ex[x
Tx] just represents the power of input process which may be

easily measurable; alternatively, as it is supposed to be a bounded quantity, an

upper bound for tr(�) may be used instead.

3.2 A numerical example on synthetic signals

Consider an input random process x 2 IR4 whose covariance matrix � is as in

[10]. The input signal is obtained by x[n] = A�1=2g[n], with g[n] being white
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Gaussian (normal) noise and A�A
T = �. Also, in our experiments we had

the entries of w0 randomly (uniformly) picked in [�1;+1] and investigated the

behavior of principal modes �i[n] = wT [n]ai; here ai stands for the ith column

of A and we supposed the eigenvalues on the diagonal of � be arranged in

descending order.

Running the learning rule (12) with � = 0:005, that allows to extract the �rst

principal component from the input stream, one expects that the �rst principal

mode �1 tends to +1 or �1, while second, third and fourth principal modes

tend to zero. These results are con�rmed by the results shown in the Figure 2,

which depicts the behavior of j�ij versus learning iterations; as convergence may

depend on initial conditions, the shown curves are averaged over 20 independent

trials.
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Figure 2: Absolute value of principal modes for FPCA.

Furthermore, we tried to run the learning rule (13) on the same data set

in order to extract the �rst minor component. We tried �rst with �� = 0,

that means using the non-stabilized �rst minor component analyzer FMCA:

Simulations show that the rule diverges quickly regardless of the learning step-

size. Then, with � = 0:05 we tried to use the su�cient condition provided

by Theorem 3, which drove us to the choices ��=tr(�) = 1:0, ��=tr(�) = 1:5,

��=tr(�) = 2:0 and ��=tr(�) = 2:5. Simulation results are shown in Figures 3, 4,

5 and 6, respectively; the shown curves are averaged over 20 independent trials.

As expected, the �rst three principal modes converge to zero, while fourth mode
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module approaches 1.
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Figure 3: Principal mode modules for FMCA, for ��=tr(�) = 1:0.

3.3 Relationships with standard signal processing tech-

niques

The discussed algorithms are developed under the hypothesis that the statistics

of the signals is not known in advance (nor is it covenient to estimate), that is

the covariance matrix of the signal x(t) is not accessible.

When the covariance matrix � is known and the problem is to estimate as-

sociated eigenspaces, the principal component convergence can be compared to

standard linear algebra packages, like the Cholesky and the SVD decomposition.

Indeed, with the covariance matrix we may invoke the Gauss-Markov Theorem

to get estimates of all kinds of subspaces [3]; but implicit in this supposition is

that the sampled random process x[n] is obtained as x[n] = Ag[n], where g[n]

is white noise and � = AAT , or has the form:

x[n] =
+1X
m=0

Amg[n�m] ;

with the �lter Am being summable; in this case the comparison should be

made between the principal-component technique and the well-established sys-

tem identi�cation methods that have been developed during the last 50 years.
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Figure 4: Principal mode modules for FMCA, for ��=tr(�) = 1:5.

In case of non-stationary signals, which might be represented by:

x[n] =
+1X
m=0

Am[n]g[n�m] ;

and of known statistics, a comparison could be made against standard adaptive

�ltering techniques.

Conversely, let us consider data reduction techniques which aim at providing

an e�cient representation of the data; we may focus on the procedure consisting

in mapping the higher dimensional data-space into a lower dimensional repre-

sentation space by means of a linear transformation, as in the Karhunen-Lo�eve

Transform (KLT). The classical approach for evaluating the KLT requires the

computation of the input data covariance matrix and then the application of a

numerical procedure to extract the eigenvalues and the corresponding eigenvec-

tors; compression is obtained by the use of the only eigenvectors associated with

the most signi�cant eigenvalues as a new basis. When large data sets are han-

dled, this approach is not practicable because the dimensions of the covariance

matrix become too large to be manipulated, and the whole set of eigenvectors

has to be evaluated even though only a little amount of them are truly used.

This short discussion partially explains the success of adaptive principal

component analysis techniques which have seen a great theoretical e�ort to be

made more and more powerful and e�cient, until the recent development of
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Figure 5: Principal mode modules for FMCA, for ��=tr(�) = 2:0.

very fast and reliable neural algorithms (see, for instance, [9]); some of them

are based on single-unit networks which just exploits the concept of deation to

extract more than one principal/minor component [12].

4 Robust-Constrained Beamforming by FMCA

We consider a minor component analysis approach to robust beamforming with

control of array beampattern by constrained adaptation. The proposed ap-

proach arises as a case of variance minimization for a linear neural unit. In de-

tails, a constrained beamformer power optimization principle may be employed,

which allows to improve the performances of simpler beamforming algorithms

by emphasizing white noise sensitivity control and prior knowledge about the

disturbances. The present approach stems from the algorithm introduced in the

preliminary report [22].

4.1 Existing contributions to neural adaptive antenna ar-

ray signal processing

Antenna array signal processing mainly consists of direction-of-arrival (DoA)

estimation and antenna beamforming. Some systems need only DoA estimation

to detect the signals, such as radar or sonar, while others need beamforming to
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Figure 6: Principal mode modules for FMCA, for ��=tr(�) = 2:5.

acquire the relevant signals such as in mobile communications.

Beamforming methods may be classi�ed into two categories: Beamform-

ing based on DoA estimated by a calibrated array and beamforming based on

a known training signal transmitted by the user. There are also some blind

beamforming methods, which do not require the knowledge of the DoA nor of

a training sequence [].

Generally, the existing methods cannot meet the requirements of real time

and multi-source tracking requirements. Neural-network-based methods are

typically adaptive method which proved to provide powerful general-purpose

algorithms. The neural models for the two classes of problems may be described

as follows: An antenna array works as a non-linear mapping from source signals

to array measurements, while the two classes of problems are both inversion

problems, trying to solve for the source signals on the basis of the array mea-

surements. An excellent review of neural-network-based methods for direction-

of-arrival estimation and beamforming has been presented recently by Du et al.

in [18].

The DoA problem aims to get the DoA of signals from the measurement

of the array output, while beamforming technique tries to recover the original

signal of the desired source. For an antenna array system, a neural network is

�rst trained, which then performs the DoA estimation or beamforming. Here we

recall the principal neural methods known in the literature involving principal

15



component analysis and its extension known as independent component analysis

(ICA).

Two algorithms are at present known that exploit the concept of cyclo-

stationarity. A cross-correlation asymmetric PCA network-based beamformer

which makes use of the cyclostationary property of signals to perform blind

beamforming has been proposed in [31]. It is formulated as an SVD problem

of the correlation matrix of the array data and its time-frequency translated

version. In [19], a fast, sub-optimal blind cyclostationary beamforming algo-

rithm inspired from the cross-correlation asymmetric PCA network of Kung

and Diamanatars (for a review see [13]) was been proposed.

Most of the antenna array signal processing methods are based on the sub-

space concept and require the eigen-decomposition of the input correlation ma-

trix. With the aim to improve the well-known MUSIC algorithm, many e�orts

have been made to compute the noise space as quickly as possible to meet the

real-time requirement. An MCA or PCA algorithm has been proposed in [4] to

extract the noise or signal subspace, respectively. By transforming the eigen-

vector problem in complex form into that in real form, one can perform the

extraction of the noise (or signal) subspace using the anti-Hebbian (or Oja)

algorithrn (see e.g. citecosta), respectively. This produces an iterative proce-

dure for real-time DoA estimation and tracking. Such algorithm has demon-

strated the capability of tracking two time-changing sources by simulation. In

[8], the unitary decomposition neural network (UNIDANN) was described. The

UNIDANN can perform the unitary eigen-decomposition of a Hermitian positive

de�nite synaptic weight-matrix, in fact the neural output will converge to the

principal eigenvectors of the synaptic weight matrix. Due to the introduction of

an optimal time-varying weighing in the recursive equation (and its underlying

analog circuit structure), the UNIDANN exhibits a fast rate of convergence and

excellent numerical stability.

As mentioned, higher-order statistical techniques than principal/minor com-

ponent analysis may be employed in blind beamforming, such as blind source

separation and independent component analysis.

In [7], the Authors consider an application of blind identi�cation to beam-

forming through the use of estimates of directional vectors rather than their

hypothesized value. Blind identi�cation allows array signal prcessing without

knowing the arrray manifold and thus the beamforming is made robust with

respect to array deformations, distortion of the wave front and pointing errors,

so that neither array calibration nor physical modeling are necessary. A surpris-

ing result �rst emerging from this contribution is that `blind beamformers' may
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outperform `informed beamformers' even when the array is perfectly known to

the informed beamformer. The key assumption is the statistical independence

of the signal sources, which is exploited by the help of fourth-order statistics.

In [38], the Authors suggested to combine a symmetrically balanced beam-

forming array with the Herault-Jutten neural network for separating out inde-

pendent broadband sound sources and their multipath delays. The advantages

of the proposed method are that no penalty occurs for long impulse responses

caused by long delays and no training signals needed for separation.

In the recent contribution [27], a possible approach to electromagnetic broad-

band source localization using a hybrid blind-separation/inversion algorithm

was proposed. The total electrical �eld versus time, emitted by the working

antennas located at di�erent and unknown geographical positions, is used, via

a suitable blind signal processing technique based on neural networks, to recon-

struct each separate contribute. When the emitted electric signals have been

separated for each emitting antenna, the unknown locations of the antennas are

determined with a numerical inversion technique.

4.2 Adaptive beamforming and constrained optimization

A on-line beamformer may be realized by a linear neural unit described by

a complex weight-vector w 2 Cp, where p is the number of sensors, and the

input-output relationship y[n; !] = wH [n; !]x[n; !], where `H ' denotes Hermi-

tian conjugation. The input x usually contains the discrete Fourier transform

of the sampled signals coming from the sensors, whereby its complex nature;

the quantity ! denotes the frequency bin under consideration. It is very im-

portant to specify the frequency bin under consideration, because the array

beampattern depends on ! or, equivalently, a signal `sees' a di�erent beampat-

tern depending on its frequency; this means that an array may cause a distortion

of a non-harmonic signal because each of its harmonic components theoretically

impinges a di�erent array. This problem is negligible for so-called narrow-band

signals, which have su�ciently narrow spectra around a central value !c that

! may be assumed equal to. Also, the geometry of the sensors array, i.e. the

location of sensors and their distance one from another, inuences the array

beampattern. For instance, a classical con�guration is the end-�re, which con-

sists of a number of sensors placed in a linear array at regular distances one

from another [14]. The directional response of each elementary sensor is an-

other factor inuencing the behavior of an array. Elementary sensors may be

omni-directional (panoramic) or directional, i.e. the sensor is more sensitive in

some directions; sometimes, for the sake of easy treatment, panoramic sensor
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hypothesis is considered, which allows for a better control of the directionality

of the whole array.

By restricting to planar geometry, the array con�guration is expressed by

a steering vector d(�) de�ned as the vector of phase delays to align the array

outputs for a plane wave coming from direction �. Also, it is useful to decompose

the covariance matrix � of the array input signal x (also know as spectral

covariance matrix) into signal and noise components as follows:

� = �2sdd
H + �2nN : (14)

The noise cross-spectral matrix N is normalized to have its trace equal to the

number of sensors p so that �2s=�
2
n is the signal-to-noise spectral ratio averaged

over the p sensors. The array gain G(�) represents the improvement of signal-

to-noise ratio along direction �, owing to beamforming, that is:

G(�)
def
=

jwHd(�)j2

wHNw
: (15)

The pro�le of array response at di�erent values of � is usually referred to as

array beampattern.

When the noise is spatially white, i.e. N = Ip, the array gain becomes what

is called white noise gain Gw(�)
def
= jwH

d(�)j2
wHw

� p [14]. Furthermore, it is de�ned

the sensitivity S(�) of array gain to signal mismatching by considering the signal

x perturbed by small random zero-mean errors; when the errors are uncorre-

lated from sensor to sensor, the sensitivity, Sw(�), proves to equal G�1w (�) [14].

Prescribing a bound for the sensitivity of the array usually means constraining

the white noise gain in the looking direction as Gw(�s) = �2, where the value

�2 must be chosen less or equal to p for the constraint to be consistent. The

white noise gain is retained as a useful and convenient measure of robustness:

Large values of � correspond to strong robustness, while small values of � do

not provide robust design.

By denoting with �s the direction of arrival of the primary source and with

ds
def
= d(�s) the corresponding steering vector, a constraint which is usually

considered is the unit boresight response, that writes wHds = 1 and ensures no

attenuation and zero phase-shift in the direction of arrival of primary source.

A way to train the beamforming neuron is to design a learning rule as a

system to solve the following optimization problem [14]:

min
w2Cp

Ex[jw
Hxj2jw] ;wHw = ��2 : (16)

It is worth noticing that the optimization problem above is a power min-

imization one; thus we may use the S-FMCA learning rule extended to the
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complex domain in order to train the beamforming neuron, and the counterpart

of the Theorem 3 to ensure its convergence. In particular, the cost function to

be minimized by a gradient steepest descent learning rule is now:

CBF(w) = 0:5Ex[jyj
2jw] + 0:5�(wHw � ��2) : (17)

On the basis of cost function (17), the convergence Theorem below holds (the

proof is omitted because it is a straightforward extension of the proof of Theo-

rem 3).

Theorem 4 Let �
def
= Ex[xxH ] be the spectral covariance matrix of the random

process x(t) in (17) with eigenpairs (�1;q1), . . . , (�p;qp). Suppose eigenvalues

are distinct and arranged in descending order, and eigenvectors are normalized

so that qHk qk = 1. If �� > ��2�1 then the state vector w(t) of gradient steep-

est minimization system of cost function (17), with initial state wH
0 qp 6= 0,

asymptotically converges towards qp up to phase shift.

As an improvement to above theory, Cox et al. report and discuss the ad-

dition of some constraints allowing for better controlling white noise sensitivity

and for exploiting the prior knowledge about the geometry of the array and

about the disturbances [14]. In details, an enhanced way to train the beam-

forming neuron is to teach it to solve the following optimization problem [14]:

min
w

wH�w ; wHw = ��2 ; KHw = b ; (18)

where � is again the spectral covariance matrix of the input, � is again the

constant that limits the white noise sensitivity, and KHw = b is a set of linear

constraints used to improve the performances of the beamformer by accounting

for prior knowledge; in the context of adaptive �ltering, it has been exploited

by Frost [14]. In particular, K 2 Cp�k has k < p linearly independent columns,

and b 2 Ck. One column of K is usually ds, and the corresponding entry of b

is 1, in order to include in (18) the unit boresight response constraint.

5 Experimental results

Here we refer to the triangular geometry depicted in Figure 7, thought to for

teleconference applications, enclosing 3 microphones (MIC) and a loudspeaker

in the center of the triangle (LS). For this con�guration the steering vector �nds

to be:

dH(�) =
h
e
�j�rp

3
(
p
3 cos(�)+sin(�))

e
j�rp
3
(
p
3 cos(�)�sin(�))

e
2j�rp

3
sin(�)

i
; (19)

19



LS

MIC 1 MIC 2

MIC 3

L

� -

Figure 7: Microphone array geometry (LS = Loudspeaker, MIC = Microphone).

where r
def
= !L

2�c . Here ! denotes again the angular frequency corresponding to

the considered frequency bin, L denotes the distance among the microphones,

and c is the sound speed. The reference system originates in the center of the

triangle and � is the angle formed by an incoming beam with the x-axis, as

shown in Figure 8.

-

6

Horizontal axix

Vertical axis

Center of the array

�

Incoming planewave

�

Figure 8: Reference system and � angle.

In order to adaptively enforce the constraints to be met, let us de�ne the

quantities:

�P
def
= Ip �K(KHK)�1KH ; �w

def
= K(KHK)�1b :

In [14] it is proposed an algorithm for updating the weight vector so that both

constraints in (18) are ful�lled while minimizing the spectral power of the neu-

ron's output C(w)
def
= Ex[jyj2jw]. In practice, this algorithm can be expressed

as:

w(t+ 1) = �w + �Pw(t)� ��P
@C(w)

@w(t)
; (20)
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plus a mechanism for optimizing on the sphere wHw = ��2. Here we use instead

the S-FMCA cost function CBF leading to the gradient:

@CBF(w)

@w
= �w � �2(wH�w)w + ��(wHw � ��2)w :

It allows to satisfy both constraints without additional mechanisms.

The stochastic counterpart of above gradient reads:

@CBF(w)

@w
� xy? � �2jyj2w + ��(wHw � ��2)w ; (21)

as used for computer-based implementation; in the above formula `?' denotes

complex conjugation.

The array number r in equation (19) takes into account both array size and

considered frequency bin, thus it represents an important feature of the system of

sensors and deserves a short discussion closely related to aliasing phenomenon.

In fact, from basic principles of wave physics we �nd that r = L
� , where � is the

wavelength corresponding to the frequency-slice that the array is accorded to;

by supposing that an incoming plane wave can impinge the array from whatever

direction, we see that the plane wave on its path encounters two sensors (say,

for instance, MIC 1 and MIC 2), thus is spatially sampled in two points. In

order to avoid ambiguities, according to Shannon-Hartley sampling theorem,

we know that the sampling frequency must be at least twice the maximum

signal frequency. In this case the sampling frequency relates to 1
L
and the wave

frequency is 1
� , thus the following important relationship should hold:

r =
L

�
� 0:5 ;

in the context of array processing, the violation of this condition causes so-called

secondary lobes to appear on the array beampattern.

It might be interesting to recall the delay-and-sum (DaS) beamformer in

order to numerically verify the above qualitative observations. The DaS is

the simplest beamformer known in the signal processing literature and is non-

adaptively designed as w = ds=p; it bases on a very simple idea: Under the

hypothesis of plane-wave propagation of the primary signal and of uncorrelated

disturbances coming from everywhere, the components of the primary signals

interfere on the array and, upon exact phase alignment provided by the beam-

former, outputs the array with unaltered power; conversely, the components of

the noises interfere in a destructive way as they can come from everywhere and

cannot be aligned.

The DaS array beampattern corresponding to six values of r for the consid-

ered triangular geometry is depicted in Figure 9, under the hypothesis that the

primary source signal is known to impinge the array from �s = �=2.
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Figure 9: DaS beamformer beampattern G(�) for six values of r (arbitrary scales

in polar coordinate system).

Clearly the DaS beamformer automaticallymeets the unit boresight response

condition, but does not embody any additional restriction nor allows for sensi-

tivity control.

In the following we present some experimental results with the adaptive

beamforming neuron performed on the basis of the triangular array.

5.1 Experiment on adaptive beamforming 1

In this experiment, suggested in [14], we test the behavior of the beamforming

neuron in presence of weak source signal and strong white noise only (the central

loudspeaker of the teleconferencing system is supposed to be turned-o� and no

strong directional disturbances are considered); for this experiment we chose,

according to Cox et al., �2n = 0 dB and �2s = �10 dB. As unit-boresight response

is the only constraint, we used K = ds and b = 1; also, we used the triangular

beamformer with r = 0:4. The source signal is known to come from direction

�s = �=2 and we used the parameters � = 0:0005 and ��=tr(�) = 1:5.

The �rst row from the top of Figure 10 shows the signal enhancement for

� = 1:5 as well as array beampattern after learning, while the second row

refers to � = 1. It can be noted that the beamformer enhances the level of

primary source signal against uncorrelated noise as long as robust design is
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Figure 10: Experiment 1: Beamformer's performances. (Top row: � = 1:5.

Bottom row: � = 1.)

enforced by � = 1:5, while the gain is unsatisfactory when weaker robustness is

enforced. About array beampattern, it is interesting to note that, in absence

of strong interference, the sidelobes are not critical to optimization and assume

uncontrolled shape, as well as the `null' position.

5.2 Experiment on adaptive beamforming 2

In this experiment, also suggested in [14], we test the behavior of the beamform-

ing neuron with a strong primary source and white noise of comparable power,

and in presence of array imperfections; for this experiment �2n = 0 dB, �2s = 0

dB. Again K = ds and b = 1, while r = 0:4. Array imperfection is simulated

by adding Gaussian uncorrelated errors to steering vector when generating the

observed signal; it simulates the misalignment of sensors due, for instance, to

mechanical shoves or imperfect construction; as the imperfections are unknown

and unexpected, in the algorithm the `nominal' steering vector is still used [14].

The source signal is known to come from direction �s = 0 and we used the

parameter � = 0:0002 and ��=tr(�) = 10.

The �rst row from top of Figure 11 shows the signal enhancement for � = 1:5

as well as array beampattern after learning and the second row refers to � = 0:5.

In absence of strong white noise sensitivity control, the array beampattern looks
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Figure 11: Experiment 2: Beamformer's performances. (Top row: � = 1:5.

Bottom row: � = 0:5.)

unsatisfactory as, due to array misalignment, it happens that large portions

of space interested by noise are enhanced; conversely, with better sensitivity

control we can see a strong main-lobe around the direction of arrival of the

primary signal and signi�cant attenuation in the other zones of the space. Note

that, in this case, the beamformer performs better with respect to the case of

the Experiment 1 because of the higher signal-to-noise ratio.

5.3 Experiment on adaptive beamforming 3

In the present formulation of constrained beamforming, we use the pair (K;b) to

achieve two results: Unit boresight response and zero-interference between the

microphones MIC 1, 2, 3 and the central loudspeaker, that prevents unpleasant

echoes and the well-known Larsen e�ect. The second target may be attained by

imposing the constraint w1+w2+w3 = 0: In this way the sound-waves traveling

from the central loudspeaker to the lateral microphones through equilength

paths cancel exactly at the output of the beamforming neuron. In this case we

thus have k = 2 constraints on a p = 3-elements array. The constraint-pair in

this case has thus the form K = [ds 13] and b = [1 0]T , where 13
def
= [1 1 1]T .

Also, in the following experiments, the primary speech source signal is known

to impinge the array from �s = 0, and a directional disturbance impinges the
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array from �d = �=8; also, spatially uncorrelated environmental noise is present.

It is important to note the the information about the direction-of-arrival of the

primary signal is exploited to design the spatial neural �lter while the other

information aren't.

Figure 12 shows the signal enhancement, noise rejection and white noise gain

for � = 1, as well as the array beampattern after learning; Figure 13 refers to the

same problem with a lower expected white noise gain, namely � = 0:5. In both

experiments we took � = 0:0005 and ��=tr(�) = 1:5. In both cases the learning
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Figure 12: Experiment 3: Beamformer's performances for � = 1.

algorihm places the null of the array beampattern in correspondence of �d in

order for the beamformer to suppress the strongest disturbance, and also shapes

the beampattern in order to mitigate the environmental noise. However, again

a stronger white noise sensitivity control allows for better performances; also, in

these simulations algorithm has provided dHs w � 1 �= 0 and w1 + w2 +w3
�= 0,

as expected.

For these experiments it is interesting to have a closer inspection of the be-

havior of the beamformer by observing the primary speech signal enhancement

as well as disturbance signals rejection. Figures 14 and 16 show the amplitude

spectra of the four component of beamformer output in the frequency domain

(namely, the contribution due exclusively to the primary source compared to the

magnitude of the contributions due to the directional disturbance, the environ-

mental white noise and the noise coming from the central loudspeaker) for the
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Figure 13: Experiment 3: Beamformer's performances for � = 0:5.

two values of the white noise sensitivity parameter. They show the directional

disturbance rejection due to the `null' in the array beampattern blindly placed

by the FMCA algorithm as well as the attenuation of the white noise and the

complete rejection of the loudspeaker signal. Figures 15 and 17 show instead

the beamformer output both in the frequency and domain in the looking direc-

tion compared to the time/frequency representation of the true primary speech

source.

6 Conclusion

The aim of this paper was to illustrate some results about �rst principal/minor

component analysis by one-unit neural systems, and some stability and con-

vergence properties of them; the reported material comes from the experience

acquired by the author during the last �ve years of research in the PCA �eld.

We have recast formal results from the scienti�c literature stating that a

version of Oja's neural MCA rule looks unstable, and we have reviewed a stabi-

lization theory for it. Particularly, we have focused our attention on the math-

ematical structure and properties of the cited neural learning rules in order to

gain knowledge on the problems and common solutions arising when dealing

with PCA-like adaptive (neural) systems.

Neural adaptive �rst minor component extraction has been adapted to ro-
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Figure 14: Experiment 3: Spectral contributions to beamformer output in the

case � = 1.

bust constrained beamforming applied to a triangular microphone-array. Exper-

imental results have illustrated the possible use of FMCA theory for designing

an e�ective spatial-�ltering neural structure endowed with an adaptive rule that

embodies white-noise-gain control and zero-interarray-interference constraints.
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A Proofs of Theorems

A.1 Proof of Theorem 1

Let us expand vector w(t) by means of the system's eigenbasis [29, 47], that

means writing:

w(t) = �1(t)q1 + �2(t)q2 + � � �+ �p(t)qp ; (22)

where the scalar functions �k(t) 2 IR are termed \principal modes". Plugging

equation (22) into system (6) yields:

pX
h=1

d�h(t)

dt
qh =

pX
h=1

�h(t)�qh �

(
pX

k=1

[�k(t)qk]
T�

pX
`=1

[�`(t)q`]

)
pX

h=1

�h(t)qh :
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By recalling the fundamental relationship �qk = �kqk we have:

pX
h=1

d�h(t)

dt
qh =

pX
h=1

�h(t)qh�h �

"
pX

k=1

pX
`=1

�k(t)�`(t)�`q
T
k q`

#
pX

h=1

�h(t)qh :

Now from the identity qTk q` = �k`, it follows that the di�erential equations

for the hth principal modes, with h � 2, read:

_�h(t) = �h(t)�h �

pX
k=1

�2k(t)�k�h(t) ; h = 2; : : : ; p ; (23)

while it is particularly useful to write on a separate equation the di�erential law

pertaining to the �rst principal mode �1(t), that is:

_�1(t) = �1(t)�1 � �31(t)�1 �

pX
k=2

�2k(t)�k�1(t) : (24)

Our aim is now to solve di�erential system (23)+(24) that is a coupled

non-linear system. In order to have the non-linear di�erential sub-system (23)

decoupled, let us de�ne the new functions:

�h(t)
def
=

�h(t)

�1(t)
; h = 2; : : : ; p ;

referred to as pseudo-modes; the new function basis f�1(t); �2(t); : : : ; �p(t)g for

w(t) allows to equivalently represent the subsystem (23) in a simpler form. To

show this property, let us consider that for the hth pseudo-mode there holds:

d

dt
�h(t) =

_�h(t)�1(t) � �h(t) _�1(t)

�21(t)
: (25)

By using equations (23) and (24) within equation (25), direct calculations show

that the dynamics of the pseudo-modes �h(t) look:

d

dt
�h(t) = (�h � �1)�h(t) ; h = 2; : : : ; p :

thus the principal modes follow the dynamics:

�h(t) = �h(0)e
(�h��1)t�1(t) ; (26)

The above formula shows that the sub-system (23) has been successfully de-

coupled, since the dynamics of each principal mode no longer depend upon the

other modes, apart from �1(t).

Now, the aim is to solve the di�erential equation (24) for �1(t). It is worth

noting that such di�erential equation slightly simpli�es if we perform the vari-

able change �1(t) = c(t)e�1t ; c(t) 2 IR. After this we have:

�21(t) = c2(t)e2�1t ; �2h(t) = e2�ht�2h(0)c
2(t) ; h � 2 ;
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then the di�erential equation (24) becomes:

_c(t) = �c3(t)e2�1t�1 �

pX
k=2

e2�kt�2k(0)�kc
3(t) : (27)

By de�ning the following quantity that does not depend on c(t):

G(t)
def
= �

pX
k=2

e2�kt�k�
2
k(0)� �1e

2�1t ; (28)

the di�erential equation for c(t) rewrites, compactly:

_c(t) = G(t)c3(t) : (29)

Since by de�nition G(t) < 0 and by the hypotheses c(0) = wT
0 q1 6= 0, the above

di�erential equation can be solved by:

Z c(t)

c(0)

dc

c3
=

Z t

0

G(� )d� )
1

c(t)2
=

1

c(0)2
� 2

Z t

0

G(� )d� : (30)

This readily leads to:

1

�1(t)2
=
e�2�1t

�21(0)
� 2e�2�1t

Z t

0

G(� )d� :

From de�nition (28) it can be seen that, under condition �1 =2 f�2; : : : ; �pg,

there holds:

lim
t!+1 2e�2�1t

Z t

0

G(� )d� = �1 ; (31)

from which it is straightforward to conclude that:

lim
t!+1

1

�21(t)
= 1 : (32)

As a consequence, from equation (26) it is readily seen that any �h(t), for h 6= 1,

asymptotically vanishes to zero provided the hypotheses are met. In this case,

the expansion (22) reduces to w = �q1, which proves the claim.

A.2 Proof of Theorem 2

The proof essentially follows that of Theorem 1, except that now the last prin-

cipal mode �p(t) plays the central role. Consider the principal modes dynamics:

_�h(t) = ��h(t)�h +

pX
k=1

�2k(t)�k�h(t) ; h = 1; : : : ; p� 1 ;

_�p(t) = ��p(t)�p +

p�1X
k=1

�2k(t)�k�p(t) + �3p(t)�p :
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Let us de�ne again the pseudo-modes with respect to mode �p(t):

�h(t)
def
=

�h(t)

�p(t)
; h = 1; : : : ; p� 1 :

by means of which it is possible to show that:

�h(t) = �h(0)e
�(�h��p)t�p(t) :

Introducing the auxiliary function c(t) such that �p(t) = c(t)e��p t, we �nd the

resolving di�erential equation:

_c(t) = c2(t)e�2�pt�pc(t)�
p�1X
k=1

e�2�kt�2k(0)�kc
3(t) :

It is useful to de�ne the function:

H(t)
def
=

p�1X
k=1

e�2�kt�k�2k(0) + �pe
�2�pt ;

by means of which it is straightforward to show that c(t) satis�es again equation

(29), with function G(t) replaced with H(t), thus the solution has the form (30).

Now the time-integral of H(t) is explicitly needed; direct calculations give:

�2e2�pt
Z t

0

H(� )d� = e2�pt
p�1X
k=1

�2k(0)(e
�2�kt � 1) + 1� e2�pt ;

thus we conclude that:
1

�2p(t)
= 1� �(t)e2�pt ; (33)

where �(t) � 0 is an increasing function of the time. It is therefore immediate

to �nd that there exists �t 2 IR such that ��2p (�t) = 0.
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