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Overview of Independent Component Analysis

Technique with an Application to Synthetic Aperture

Radar (SAR) Imagery Processing

Simone Fiori

Abstract

We present an overview of independent component analysis, an emerg-

ing signal processing technique based on neural networks, with the aim

to provide an up-to-date survey of the theoretical streams in this disci-

pline and of the current applications in the engineering area. We also

focus on a particular application, dealing with a remote sensing technique

based on synthetic aperture radar imagery processing: We brie
y review

the features and main applications of synthetic aperture radar and show

how blind signal processing by neural networks may be advantageously

employed to enhance the quality of remote sensing data.

Keywords. Blind signal processing by neural networks; Independent

component analysis (ICA); Remote sensing; Synthetic aperture radar

(SAR).

1 Introduction

Over the last few years there has been an enormous increase in the interest of

applications of neural networks to astronomy, geology, geophysics and environ-

ment protection. These research e�orts have addressed a variety of problems

ranging from the management of scienti�c equipment to the representation and

interpretation of measured data.

These applications comprise the use of neural networks in astronomy, for

e.g. analysis of stellar light curves and solar data (Tagliaferri, Ciaramella, Mi-

lano, Barone & Longo, 1999), the analysis of photometric images as e.g. for

star/galaxy separation, deblending of unresolved images and morphological clas-

si�cation of galaxies (Andreon, Capuano, Gargiulo, Longo & Tagliaferri, 2000;

Odewahn, Stockwell, Pennington, Humphreys, & Zumach, 1992), the analy-

sis of spectroscopic data (e.g. for spectral classi�cation of stars and galaxies)

the retrieval of information from very large databases of astronomical data
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(Longo, Tagliaferri, Sessa, Ortiz, Capaccioli, Ciaramella, Donalek, Raiconi, Sta-

iano, & A. Volpicelli, 2001; Longo, Donalek, Raiconi, Staiano, Tagliaferri, Sessa,

Pasian, Smareglia & Volpicelli 2002), the automatic scheduling and the auto-

matic evaluation of the performances of observing facilities. The known ap-

plications also comprise the use of arti�cial neural networks in geology and

geophysics for e.g. stratigraphy, cycles detection and paleomagnetism (Taglia-

ferri, Pelosi, Ciaramella, Longo, Barone & Milano, 2001), the analysis of seismic

data and geologic images (Acernese, Ciaramella, De Martino, De Rosa, Falanga

& Tagliaferri, 2002; Acernese, Barone, De Rosa, Eleuteri, Milano, Tagliaferri,

2001), the analysis of synthetic aperture radar images for geological and geo-

physical prospecting (Zhong, Wicks, Power, Dzurisin Thatcher & Masterlark,

2002; Dowd, Vachon, Dobson & Olsen, 2001; Legarsky, Gogineni & Akins, 2001;

Schulz-Stellen
eth, Horstmann, Lehner & Rosenthal, 2001; Lin, Alpers, Khoo,

Lim, Lim & Kasilingam, 2001; Horstmann, Koch, Lehner & Tonboe, 2000), and

environmental data analysis (Andretta, Eleuteri, Fortezza, Manco, Mingozzi,

Serra & Tagliaferri, 2000).

The value and variety of these applications suggest the need of a cumulative

investigation on the produced neural techniques, algorithms and theories for the

analysis of complex scienti�c data in astronomy, geology and geophysics. In fact,

in spite of the enormous amount of work done, no comprehensive summaries of

the main techniques have appeared so far. These reviews would be worthwhile

for all people active in the �eld.

In particular, in this paper we focus on neural independent component anal-

ysis with application to remote sensing by synthetic aperture radar imagery

processing.

The Independent Component Analysis (ICA) is a well-established statistical

signal/data processing technique that aims at decomposing a set of multivariate

signals into a base of statistically independent data-vectors/streams with the

minimal loss of information content. The main two recognized purposes of ICA

are:

� Linear blind source separation: In this case the aim is to recover a number

of statistically independent signals from their unknown linear mixtures,

under simple consistency conditions. Namely, a linear mixture of indepen-

dent source signals is supposed to be observed, and on the basis of these

only available information, the original source signals are recovered from
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their mixtures. The classical hypotheses made on the unknown sources

are: 1) each source signal is an independent identically distributed (IID)

stationary random process; 2) the source signals are statistically indepen-

dent at any time; 3) at most one among the source signals has Gaussian

distribution. This minimal set of requirements ensures the existence and

uniqueness of the solution to the blind separation problem (but for or-

dering, sign, and power scaling), the minimal loss of information about

the sources and, as a by-product, the identi�cation of the mixing-model

features;

� Data representation and visualization: High-dimensionality data/signals

are di�cult to handle and to visualize, but often contain signi�cant re-

dundancies, which make their actual information-structure dimensionality

considerably lower than their representation dimensionality. These con-

current facts suggest the possibility to design signal/data processing algo-

rithms capable of �nding a suitable lower-dimensionality representation of

the signals at hand by reducing the statistical dependencies among them.

In this context, the independent component analysis technique has proven

to provide a suitable solution through the concept of independent latent

variables: The ICA may discover a linear projection of the data into a

low-dimensional basis of statistically independent signals, that carry on no

mutual information, thus providing a parsimoniousmaximally-informative

representation of the original data. The basis data-streams are termed la-

tent variables, which do not necessarily possess a recognizable physical

meaning.

The classical example used to informally explain the blind separation problem

is the \cocktail party" scenario: Let us imagine a number of people stand in a

room and speak together; if the room is equipped with a number of microphones,

each sensor receives a di�erent superposition of the speech signals uttered by

each person in the room, so that the set of received signals may be described by a

linear mixture model, that takes into account the emitters-sensors geometry and

the pressure waves propagation phenomena. The aim of blind source separation

algorithm is to recover, from sensor observations only, the single independent

signals uttered by the people.

An example that helps clarifying the concept of latent variables extraction
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is the analysis of vibrating machines: Le us suppose a rotating machine (e.g. a

rotating pump under fault test) is equipped with a number of accelerometers

that measure its vibration intensities versus time; we know that the recorded

accelerometer signals are originated by a large number of small vibrating parts,

that exceeds the reasonable number of di�erent measurements, which in turn

may exceed the number of reasonable signals we can process for fault testing. By

seeking for a compact representation of the measured data by the ICA technique,

the obtained basis of independent signals are the complex vibrations of a small

number of virtual oscillators whose linear superposition generate the observed

data.

A dual-pair of interesting examples that further clari�es the independent

latent variables concept is related to the analysis of natural images and natural

sounds: In a classical paper by Bell & Sejnowski (1997) it was shown that the la-

tent variables for natural scenes are edge �lters, that closely resemble the Gabor

�lters, while in a recent dual paper, Abdallah & Plumbley (2001) investigated

the same question for natural sounds; it is also worth mentioning that recently

Seifritz, Esposito, Hennel, Mustovic, Neuho�, Bilecen, Tedeschi, Sche�er &

Di Salle (2002) have investigated the temporal decomposition of sound-evoked,

blood oxygen level-dependent signal response into independent transient and

sustained components, which predominate in di�erent portions (core and belt)

of the a ditory cortex, con�rming the suitability of ICA techniques for the anal-

ysis and explanation of some brain-related activities.

It is de�nitely apparent that much theoretical research work has been carried

out by several researchers over recent years in order both to produce ever re-

�ned algorithms for performing independent component analysis, and to publish

consistent results about the basic theory of ICA (concerning the signals models

and the solvability of the analysis problem related to these models) and about

the algorithmic-level theory (concerning the theoretical study of the relevant

properties of the di�erent classes of algorithms, such as convergence, reliabil-

ity, computational burden, equivariancy, and implementation questions). The

theoretical research work carried out so far has been summarized in two books

(Lee, 1998; Hyv�arinen, Karhunen & Oja, 2001) and in a series of journal pa-

pers (Cardoso, 1998; Cardoso 1999; Hyv�arinen & Oja, 2000; Fiori, 2000a; Fiori

2001b).

Concurrently, the scienti�c community has manifested an ever increasing in-
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terest in the ICA technique and, generally speaking, in the blind signal process-

ing research �eld, because it provides a powerful tool for signal/data processing,

comparable in importance to the older principal component analysis. Known

applications range from speech recognition to fault detection, from telecommu-

nications to medical imaging, from �nancial data market analysis to biological

data pre-processing, and from industrial plant identi�cation to non-destructive

evaluation (Clemente & Acha, 1997; Karhunen, Hyv�arinen, Vigario, Hurri &

Oja, 1997; Liu, 1996; Cichocki & Cao, 1998; Cichocki, Karhunen, Kasprzak &

Vigario, 1999).

Synthetic aperture radar refers to a technique used to synthesize a very long

antenna by combining signals received by the radar as it moves along its 
ight

track, or, in other terms, a synthetic aperture is constructed by moving a real

aperture or antenna through a series of positions along the 
ight track. As the

radar moves, a pulse is transmitted at each position and the return echoes pass

through the receiver and are stored in the memory of the acquiring equipment.

Synthetic aperture radar is a technique used to generate radar images in

which �ne details can be resolved. SARs provide unique capabilities as an

imaging tool. Because they provide their own illumination (the radar pulses),

they can image at any time of day or night, regardless of illumination, and

because the radar wavelengths are longer than those of visible or infrared light,

SARs imaging is independent of cloudy and dusty conditions.

The aim of the present paper is to provide a non-mathematical overview of

the independent component analysis problem, its models and the state-of-the-

art algorithms, as well as of some interesting applications in the engineering

area (section 2). After providing a brief overview of the remote sensing problem

(section 3), an application of ICA technique to synthetic aperture radar image

enhancement is discussed with experiments on real-world data (section 4).

2 Overview of Independent Component Analy-

sis

The number of available contributions in the independent component analysis

�eld is motivated by the wide variety of di�erent observed-signals models con-

sidered in the applied areas. An informal but su�ciently representative list of

models is given by:
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� Instantaneous or convolutional mixture: When the relationship describing

the formation of the observed signals/data from the source/latent signals

does not take into account the temporal structure of the latter, i.e. the

linear mixing operator is constant over time, the model is termed instan-

taneous. Otherwise, a convolutional model can be considered, which de-

scribed the observed data/signals as the results of multiple linear �ltering

applied to the source/latent streams; in this case the linear mixing oper-

ator may be represented as a time-sequence of mixing matrices, a matrix

of �lters, or a matrix of functions in the frequency-domain;

� Linear or non-linear mixing : In the simplest (though much representative)

case the mixing model is linear. Otherwise, some kinds of non-linear

structures have been considered, such as the post-linear mixing model, in

order to take into account e.g. the non-linear distortion introduced by the

measurement systems;

� Real-valued or complex-valued models: In some applied �elds, such as e.g.

in telecommunications, it is useful to treat the involved signals as complex-

valued data-streams, thus dedicated algorithms have been developed for

complex-valued models handling;

� Square, over- and under-determined mixtures: The number of available

measures may be equal to the number of source signals in blind separation,

in which case the mixture is termed square; from a theoretical point of

view this hypothesis allows carrying out some useful mathematics, while

from a practical point of view it is not always realistic. The cases where the

number of sources is larger or smaller than the number of observations are

properly represented by the over- and under-determined models. Similar

considerations may be carried out when latent-variable models are dealt

with;

� Noiseless or noisy mixtures: The signals model may or may not take

into account the possible presence of additive disturbance a�ecting the

measured signals;

� Stationary or non-stationary model : The hypothesis of having IID source

or latent signals is not always realistic; real-world random signals may

exhibit time-
uctuations of their statistical features, and this phenomenon
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may a�ect the performance of the independent component analysis if not

properly taken into account. In opposition to stationary models, non-

stationary ones try to capture the non-stationarity of the sources and to

make the related ICA algorithm take advantage of this knowledge.

2.1 Overview of independent component analysis meth-

ods

The roots of basic ICA can be traced back to the work of Darmois in the 1950's

and Rao in the 1960's, concerning the characterization of random variables in

linear structure (Darmois, 1953; Kagan, Linnik & Rao, 1973).

The pioneering work on independent component analysis was carried out

by Jutten & H�erault (1988; 1991), who introduced an adaptive algorithm in a

feedback neuromimetic multiple �lter. Their approach was further developed

by Cichocki & Umbehauen (1996).

Later on, Comon (1994) formalized and developed the basic theory of in-

dependent component analysis, concerning the general conditions of existence,

uniqueness and estimation indeterminacies; Comon also cast the ICA-computation

problem as an optimization one and proposed a class of cost functions termed

discriminant contrasts. The contrast-based approach to ICA has been further

studied by Comon & Moreau (1997) who introduced simpli�ed contrasts for

certain classes of signals (i.e. for signals with positive or negative kurtosis). On

the basis of simpli�ed contrasts (i.e. on kurtosis optimization), Cardoso & La-

held (1996) proposed an adaptive algorithm relying on the relative gradient,

which has been proven to enjoy the very desirable property of equivariancy,

that is, the source extraction quality in blind source separation is independent

of the mixing matrix and, in particular, from its conditioning number. Also,

Delfosse & Loubaton (1995) proposed an algorithm based on a de
ation proce-

dure, whose idea has been recently developed by Thawonmas, Cichocki & Amari

(1998) resulting in a cascade neural network. The de
ation or sequential ap-

proach to ICA consists in extracting one component at a time from the original

data, de
ated from the previously-extracted components, while non-sequential

or parallel approaches try to extract all the required components concurrently.

Parallel independent component analysis algorithms may su�er from conver-

gence di�culties, owing to the complexity of the search space, and from com-

putational burden, especially for large-dimensionality data; on the other hand,
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sequential algorithms may su�er from error accumulation from component to

component. An experimental comparison presented in (Fiori, 2001b) suggests a

hybrid sequential-parallel approach, i.e. sequential extraction of groups of com-

ponents.

Concurrently to statistical signal processing techniques, unsupervised learn-

ing rules based on information theory were proposed. The aim was to maximize

the mutual information between the inputs and the outputs of a neural network,

so that each neuron matches features being as statistically independent as pos-

sible from the other neurons. Nadal, Brunel & Parga (1998) showed that in the

low-noise case, the maximum of the mutual information between the input and

the output of a network implies that the output joint probability density func-

tion (pdf) factorizes as a product of marginal probability density functions.

Roth & Baram (1996) and Bell & Sejnowski (1996), independently devised

stochastic gradient learning rules for ensuring mutual information maximiza-

tion and applied them to forecasting and time-series analysis, blind separation

of sources and blind deconvolution, respectively. Their approach was further

developed by Yang and Amari (1997). Girolami & Fyfe (1997) employed neural

exploratory projection pursuit algorithms for achieving separation. Generalized

Hebbian learning algorithms for ICA have been developed by Karhunen, Oja,

Wang, Vigario & Joutsensalo (1997), Hyv�arinen & Oja (1998), Oja (1997) and

Fiori (2000b; 2001b). The techniques based on maximum likelihood estimation

(Pham, Garrat & Jutten, 1992; Pearlmutter & Parra, 1996; Belouchrani & Car-

doso, 1995) and the recent proposal of Bayesian ICA (Knuth, 1998; Roberts,

1998) and maximum-a-posteriori (MAP) parameter estimation for blind source

recovering (Parra, Mueller, Spence, Ziehe & Sajda, 2000) are of interest because

they enable us to cast the ICA-computation problem in a way that allows to

take into proper account the a-priori information on the sources or the signal

models. As a meaningful example, in blind localization of sources emitting pres-

sure or electromagnetic waves, the known features of the propagation model and

physical constraints may be inserted into the separation algorithm. Also, Sagi,

Nemat-Nasser, Kerr, Hayek, Downing & Hecht-Nielsen (2001) recently devel-

oped a new technique based on the `cortronic' neural network, a biologically-

plausible neural model, while Welling and Weber (2001) proposed a EM-type

learning procedure for ICA computation by neural networks.

The basic principle that the MMI-ICA technique is based on, is that the
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mixing phenomena transform a set of statistically independent random signals

into a set of statistically-dependent signals. Thus, in order to attain separation,

the neural network should learn how to make the network's outputs become

as independent as possible; under proper consistency conditions, this ensures

the output coincide to the original independent sources, up to arbitrary order

permutation and components scaling. In principle, the independence of the net-

work's outputs may be measured in terms of the output signals joint probability

density function and marginal densities: If these signals are statistically inde-

pendent, the joint probability factorizes into the product of the marginal den-

sities. A way to achieve separation is thus to de�ne a measure of the mismatch

between these two quantities, and a learning algorithm to learn the network

connection-matrix in order to minimize such disagreement. A useful and widely

employed measure of statistical dependency is the mutual information between

network's output signals.

Once that an appropriate criterion has been de�ned as a function of net-

work's connection-matrix, the network learning phase may be formally conceived

as an optimization procedure allowing to search for the connection pattern that

minimizes or maximizes the criterion.

As improvements to original gradient-based MMI-ICA learning rules by Bell

& Sejnowski (1996), several new optimization techniques, oriented to e�cient

extraction of independent components, have been recently developed, such as

the �xed point technique (Hyv�arinen & Oja, 1997), the natural-gradient one by

Amari (Amari, 1998; Yang & Amari, 1997), and the Riemannian gradient on

Stiefel manifold and orthogonal group (Fiori, 2001a; Fiori, 2002b; Fiori, 2002d).

A problem arising in MMI-ICA algorithms implementation by neural net-

works is source adaptivity: The MMI principle is based on non-linear trans-

formations, implemented by the neurons' activation functions, which depend

on components' probability density functions; these are of course unknown and

need to be estimated from the networks' outputs. Some adaptivity is achieved

by the use of adaptive activation function neurons, realized by the help of the

mixture-of-kernels technique (Xu, Cheung, Yang & Amari, 1998; Xu, Cheung &

Amari, 1998), standard multilayer perceptrons (Taleb & Jutten, 1997), quasi-

Dirac-kernel functions (Gusta�son, 1998) and quasi-polynomial 
exible func-

tions as well as discrete-histograms (Fiori 1999; Fiori 2000a; Fiori 2002c; Fiori

& Bucciarelli, 2001).
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Non-conventional neural optimization techniques have been recently ap-

plied to blind separation: As three examples, the present author employed

mechanical-type learning algorithms to blind separation by the ICA (recently

extended to complex-valued sources) (Fiori, 2000b; Fiori 2002a), Prieto & Pun-

tonet (1998) and Puntonet & Prieto (1998) developed a purely geometrical

approach to be applied in presence of unimodal-symmetrical sources density

distributions, while Yoshioka and Omatu (1998) applied a genetic algorithm to

minimize ICA cost functions.

Other algorithms have been proposed from di�erent perspectives by several

authors. It is in fact known that independent component analysis relies on some

assumptions which limit its �elds of application: Researchers have recently tried

to overcome this problem by extending the classical algorithms to convolutional,

under-determined, non-stationary, and non-linear mixtures.

The �rst goal that may be considered concerning non-stationarity in ICA

consists in making ICA algorithms robust with respect to possible source non-

stationarity. This has been achieved by extended versions of the classical H�erault-

Jutten algorithm for linear instantaneous mixtures and of the corresponding

Nguyen-Jutten algorithm for convolutional mixtures. The solution proposed

consists in normalizing the adaptation terms of these algorithms by short-term

estimates of the powers of the estimated sources. This may also be seen as a

time-varying adaptation gain and makes the algorithms able to automatically

track the time-varying levels (power values) of the sources. This is of special

interest for such signals as speech, where �xed-gain algorithms cannot com-

bine fast convergence and good component extraction accuracy. Other related

features result from this normalized approach, especially the ability to track

time-varying mixtures. More details about this approach may be found espe-

cially in (Deville, Damour & Charkani, 1999), which introduces this approach

in the linear instantaneous case and discusses the above case of unknown but

�xed source levels, and (Charkani & Deville, 1999a; 1999b), which present a

much more complete approach for the convolutional case.

It has also been proposed to take advantage of the assumed non-stationarity

of the considered sources. Two aspects may be distinguished in this framework:

We may still restrict ourselves to the case that the number of observations is

at least equal to the number of sources, or consider the underdetermined case,

i.e. the situation arising when the number of sources is larger than the number
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of observations. In order to address the latter, more complex, case, the general

concept of di�erential source separation was introduced (Deville & Savoldelli,

2001).

A somewhat related way to tackle ICA problems consists in using their

time-frequency representations. One then takes advantage of assumed speci�c

properties of the time-frequency signatures of the sources, which appear for non-

stationary sources. For linear instantaneous mixtures, a preliminary description

of these methods appeared in (Abrard, Deville & White, 2001a; 2001b).

2.2 Relationships with projection pursuit

It might be interesting to discuss the relationships among blind sources separa-

tion by the independent component analysis and the closely-related statistical

theory of projection pursuit (PP) (Friedman & Tukey, 1974; Huber, 1985).

While it is true that the mathematics of ICA and PP are very closely related

in the basic case, the following di�erences in the application, history, and also

the theory of these methods deserve to be underlined:

� Independent component analysis was originally devised to solve a concrete

separation problem, whereas projection pursuit was originally developed

for visualization;

� In PP, the starting point is dimension reduction of a large-dimensional

space. In ICA, the starting point is estimation of components or latent

variables (basic signals), and this is meaningful even in two-dimension;

� If the time-structure of the signals and the mixing system or signal model

are taken into account, ICA is very di�erent from PP.

These points are clearly illustrated in one of the original motivations for ICA

(Jutten & H�eault, 1991): Two nervous �bers transmit mixtures of signals related

to joint stretch and stretch speed, and these two signals need to be separated by

the central nervous system; �nding interesting projections is hardly the proper

approach in this case.

Also, basically ICA searches simultaneously for many components with the

criterion that they are mutually least dependent. On the other hand, PP ex-

tracts components sequentially with the criterion to be most interesting (non

Gaussian). There is no penalty for extracting (nearly) the same component
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again; instead, what is usually done is to subtract the extracted component

from the data (through a regression) to avoid it being extracted again. How-

ever, if a component is not exactly extracted, it will contaminate all subsequent

steps in PP; this problem is in fact encountered in sequential ICA as well.

In the blind source separation by the ICA, the model of the data can be taken

into account: After separation is completed, as a by-product we could also obtain

an estimate of the mixing model. However, the latter operation is not trouble-

free; apart from numerical/precision/size problems, there are the well-known

indeterminacies: The separation algorithm causes an arbitrary re-ordering of

the source signals, and, due to the multiplicative nature of the model, scale

factors and phase rotations (sign switch, in the real-valued case) appear. This

re
ects in some indeterminacy in the elements of the estimated model. These

problems are fundamental, in the sense that there is no way to suppress them.

In fact, in many algorithms, it is supposed that the sources have unit powers,

so that the `true' powers result in mixing matrix column scaling. However, it is

quite natural to suppose that if we know in advance that the mixing matrix has

some special structure (i.e. induced by the physical properties of the problem

at hand), it could be possible to remove some indeterminacy.

In blind source localization by ICA, for instance, it is possible to solve for the

mixing matrix, however, at some point the mixing matrix coe�cients become

redundant as there will be fewer parameters describing the source positions than

mixing matrix elements. Using a Bayesian methodology, one can derive more

powerful algorithms that solve for these parameters rather than the elements of

the mixing matrix. As mentioned, in this case, the algorithm provokes a cross-

over from the source separation problem to the problem of source localization.

The two are intimately related: Depending on the prior information possessed

and the information sought for, we obtain either a source separation algorithm, a

source localization algorithm, or simultaneous source separation and localization

algorithm.

2.3 A pathway to geometric integration

In orthonormal independent component analysis (by pre-whitening) as well as in

many unsupervised learning theories, the common way to design a learning al-

gorithm arises from the following considerations. The lack of fundamental infor-

mation in the engineering problems which require the use of unsupervised neural
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systems is overcome by introducing concepts referring to high-order statistics,

information theory and optimization. The three mentioned mathematical theo-

ries result to be closely related and widely employed in the literature in order to

cope with blind signal processing problems. By making use of the concept of the

information theory, in fact, it is possible to de�ne suitable objective functions

which describe in informational terms the processing problem under analysis.

The mathematical statistics gives then some formal instruments for elaborating

theses objective functions, and the optimization theory constitutes the analytical

basis for synthesizing global functions containing eventual physical constraints

arisen from the problem, and for determining learning algorithms endowed with

the necessary requisites about convergence speed, steady-state precision, and

sensitivity to external disturbances.

The �nal result of the preceding design work is often a set of learning dif-

ferential equations, written in matrix form, whose solution gives the learning

trajectory where the mentioned physical constraints denote what mathemati-

cians refer to as invariants associated to the di�erential equations. In order to

respect the invariants, that is to preserve the qualitative characteristics of the

solutions, the learning initial-value problems should be integrated numerically

in a proper and e�cient way. In particular:

� Properness: The di�erential equations should be integrated in a way

that preserves the invariants both in order to ensure the quality of the

signal processing solution provided by the neural system and to preserve

some quantitative features of the learning theory such as intrinsic stability

(for an expanded discussion see Fiori (2002d));

� E�ciency: An integration method that taks into account the structure of

matrix-type expressions involved in the learning equations might possess

contained computational complexity (Fiori & Celledoni, 2002).

The proper mathematical theoretical setting for discussing and formalizing

the mentioned topics is the Geometric Integration (GI). The classical e�orts in

numerical analysis have been to model physical phenomena into algorithms that

produce su�ciently accurate and a�ordable numerical approximations of their

behavior. Geometric integration is concerned also with producing numerical

approximations preserving the qualitative attributes of the solutions: Some ex-

amples of GI algorithms for di�erential equations include Lie group integrators,
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volume and energy preserving integrators, integrators preserving �rst integrals,

Lyapunov functions and Casimirs, as well as Lagrangean and variational inte-

grators (Hairer, Lubich & Wanner, 2002).

Preliminary and encouraging results in the �eld of independent component

analysis in presence of linear mixtures of real-world signals have been obtained

recently as reported in (Fiori & Celledoni, 2002; Fiori & Rossi, 2002).

3 Remote Sensing and Synthetic Aperture Radar

(SAR)

Remote sensing is the science of acquiring information about material objects,

areas, or phenomena, without coming into physical contact with the objects,

areas, phenomena under investigation.

In absence of direct contact, some mean of transferring information through

space is necessary: In remote sensing, information transfer is accomplished by

the use of electromagnetic radiation. On the basis of the physical type of used

energy sources, we distinguish between passive remote sensing, which makes use

of sensors that detect the re
ected or emitted electromagnetic radiation from

natural sources, and active remote sensing, which exploits sensors that detect

re
ected responses from objects that are irradiated from arti�cially-generated

energy sources, such as radar. A schematic of common remote sensing plat-

forms with on-board radar sensors is depicted in the Figure 1. Remote sensing

measures are recorded in digital form and then digitally processed in order to

produce images for interpretation purposes. Variations in the scene's character-

istics are represented as variations in brightness on recorded images, as usually

a particular part of a scene which re
ects more energy appears bright, while a

part of the same scene that re
ects less energy appears darker.

Digital images consist of discrete pixels, whose intensity value represents the

average radiance of a relatively small area within a scene, where the size of the

elemental area a�ects the reproduction of details within the scene; then, digital

image processing techniques are necessary to retrieve the desired information

from the raw images.

Digital image processing is a collection of techniques for the manipulation

of digital images by computers, which encompass the operations of image data

manipulation and management, geometric and radiometric corrections, enhance-
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Figure 1: Schematic of common platforms with radar sensors on board.

(Reprinted, with permission, from www.gisdevelopment.net).

ment of images quality, and information extraction. Image processing methods

may be grouped into four functional categories: Image management, image

restoration, image enhancement, and information extraction. These categories

may be brie
y described as follows:

� Image management : Image acquisition and storage is the �rst step in im-

age analysis. In particular, pictorial data storing requires special attention

due to the large size of this kind of data, that make it useful to perform

some kind of compression and size-reduction in order to save memory sup-

ports. Usually natural images are highly redundant (correlated), i.e. parts

of them can be reconstructed from the knowledge of few features; princi-

pal component analysis (or Karhunen-Loeve transform) is a widely known

technique that allows representing real-world data by a small amount of

uncorrelated features (for a recent review see e.g. Costa and Fiori (2001)).

� Image restoration: The process of image acquisition may degrade the

observed scenes because of measurement errors, as for example the blur

e�ect caused by a non-focused optical system, and of external causes, such
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as the opacity of the mean that the images are acquired through. The

images restoration procedures tend to ameliorate the quality of recorded

scenes by removing noise and distortion e�ects introduced by the imaging

system(for a recent review see e.g. Kundur and Hatzinakos (1996)).

� Image enhancement : Even if perfectly reproduced, a digital image may

not yet be suitable for elaboration purpose, because its intrinsic quality

does not allow to reveal the interesting features of the phenomena it cor-

responds to nor to emphasize the information content it brings on. To

this purpose, image enhancement techniques have been developed; they

introduce usually quite subjective warping of the original data in order to

emphasize certain attributes, as brightness, to calibrate other attributes,

as saturation, and equalize other features, such as hue (for a recent review

see e.g. Fiori, Grimani and Burrascano (2002)).

� Information extraction: The most \intelligent" operation to be performed

on the basis of restored/enhanced available data is the extraction of rel-

evant information, that facilitates scene interpretation. The subject of

feature extraction, ranking and selection is covered by pattern analysis

research �eld.

In the present paper we focus our attention to radar-based remote sensing and,

in particular, to synthetic-aperture radar.

3.1 Synthetic aperture radar

Synthetic Aperture Radar (SAR) is an active microwave device, producing high-

resolution imagery of the Earth's surface (for a recent review see e.g. Hogda,

Guneriussen & Lauknes (2002), Lou (2002), Brown & Bennett (2001), and Jao

(2001)). Known past and present Earth observation satellites are the ERS-

1/ERS-2, JERS-1, the Shuttle imaging radar SIR-C/X-SAR, and RADARSAT.

An example of their use is the ESA/Eurimage \Earthwatch" program, producing

imagery of natural and arti�cial disasters when weather conditions prevent other

forms of surveillance from being pro�table.

Two important properties distinguish SAR from classical optical imagery:

� The SAR is an active device: It generates its own illumination of the scene

to be viewed. The illumination is coherent: All the light in any 
ash is
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exactly in phase, as in a laser, so it does not disperse over the distance

between the satellite and the Earth's surface. A SAR device can measure

both intensity and phase of the re
ected light, resulting highly sensitive to

textures. Experiments with the technique of interferometry have shown

that SAR can accurately model relieves, and appears also able to reveal

small changes over time. Some consequences are that it works day and

night as well, it can be used to gain additional information with respect to

optical imagery, especially when di�erent polarization are available on the

same platform, it needs more power than passive sensors to be operated

(and can therefore only operate intermittently), and that it su�ers from

speckle, an artifact of interference patterns in coherent light.

� The SAR is a radar : It uses microwave frequency radiation, which pene-

trates cloud and haze, so it views the Earth's land and sea surface in all

weather, that is the major advantage of SAR for general-purpose remote

sensing.

The �rst implementation of radar interferometry came in Earth-based obser-

vations of Venus (Rogers & Ingalls, 1969). The �rst reported experiments to

determine terrain elevation of the Earth were by Graham (1974). Ten years

later, interferometric radar experiments on the airborne system Convair-990

and on the spaceborne systems Seasat and SIR-B took place. Since 1990 the

interest in SAR interferometry has grown due to the impressive amount of data

suitable for interferometry from ERS-1 and the many airborne systems available

such as the AIRSAR.

SAR images are suitable for vegetation studies, as well as ocean waves, winds,

currents, seismic activity and moisture content. In practice, by properly process-

ing the complex SAR images, it is possible to obtain high-resolution topographic

maps (5 m or less height resolution), measure very small (1 cm or less) Earth

surface motion over large swaths, measure water surface currents (with an ac-

curacy around 5 cm/s) and classify land surfaces. In particular, the following

main applications are worth citing:

� Ground topography : Studies on vulcanology and Earth surface motion

related to di�erential SAR interferometry are well known. ERS-1 helps

the evaluation of digital elevation models with a grid spacing of about

50 m and a height accuracy of about 5 m. AIRSAR and Do-SAR allow
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the evaluation of the digital elevation models with a grid spacing smaller

than 10 m and a height accuracy around 1 m. The SAR-derived digital

elevation models (DEM) have a big impact in the �eld of the topography:

They are replacing the stereo DEMs derived from optical systems (Hogda,

Guneriussen & Lauknes, 2002).

� Ocean surface current measurements: Ocean surface currents having speeds

of less than 4 cm/s have been observed by Goldstein & Zebker (1987).

� Earth surface motion detection: Massonet (1993) shows the possibility

of measuring the residual displacement caused by the earthquakes. The

di�erential interferometry is clearly validated for long term survey of slow

faults (typically 10 mm/year measured with ERS-1). This is a remarkable

result, because, due to the motion errors of the aircraft, it is very di�cult

to implement the di�erential interferometry in an operational way.

� Land surface classi�cation: By carrying out repeat-pass interferometry,

coherence maps and change detection of SAR images can be used to pro-

vide properties of land surfaces. Results using ERS-1 data show the ca-

pability of the classi�cation of forest, open �elds, urban areas and open

water (Lin, Alpers, Khoo, Lim, Lim & Kasilingam, 2001).

An exemplary commercial SAR system is depicted in the Figure 2: It is a

Predator Lynx synthetic aperture radar system.

3.2 Some details on imaging radar and SAR

An imaging radar uses an antenna and a digital computer to store the acquired

images. A radar image is generated only by the light that gets re
ected back

towards the antenna.

Radar measures the strength and round-trip time of the microwave signals

that are emitted by an antenna and re
ected from a distant surface or object.

Its antenna alternately transmits and receives pulses at particular microwave

wavelengths (in the range of 1 cm to 1 m, which corresponds to a frequency

range of about 300 MHz to 30 GHz) and polarizations (waves polarized in a

single vertical or horizontal plane). About 1500 high-power pulses per second

are transmitted towards the target, with each pulse having a pulse duration of
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Figure 2: A Predator Lynx synthetic aperture radar system. (Reprinted, with

permission, from www.lynxsar.com.)

typically 10-50 microseconds. The pulse normally span a small band of frequen-

cies, centered on the frequency selected for the radar; typical bandwidths are

in the range 10 to 200 MHz. At the Earth's surface, the energy content of the

incoming radar pulse is scattered in all directions, while only a fraction of it

is re
ected back towards the antenna. Such energy returns to the radar as a

weaker radar echo and is received by the antenna in a speci�c polarization (not

necessarily the same as the transmitted pulse). Since the radar pulse travels

at the speed of light, it is relatively straightforward to use the measured time

corresponding to the roundtrip of a particular pulse to calculate the distance or

range to the re
ecting object.

In the case of imaging radar, the radar moves along a 
ight path and the

area illuminated by the radar, or footprint, is moved along the surface, building

the image (see Figure 3). The chosen pulse bandwidth determines the reso-

lution in the range direction (higher bandwidth means �ner resolution in this

dimension), while the length of the radar antenna determines the resolution in

the azimuth direction of the image (the longer the antenna, the �ner the reso-

lution in this dimension). In an imaging radar, the term \aperture" means the

opening used to collect the re
ected energy. Because the radar is moving with

respect to the ground, the returned echoes are Doppler-shifted (negatively when

the radar approaches a target, positively when it moves away). Comparing the
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Figure 3: Exemplary representation of SAR footprint.

Doppler-shifted frequencies to a reference frequency allows returned signals to

be \focused" on a single point, e�ectively increasing the length of the antenna.

SAR data focusing consists in correctly matching the variation in Doppler fre-

quency for each point in the image; this operation requires a precise knowledge

of the relative motion between the platform and the imaged objects.

Some SARs can transmit pulses in either horizontal (H) or vertical (V) po-

larization and receive in either H or V modes, with the resultant combinations

of HH (Horizontal transmit, Horizontal receive), VV, HV, or VH. Additionally,

some SARs can measure the phase of the incoming pulse and therefore measure

the phase di�erence (in degrees) in the return of the HH and VV signals. This

di�erence is frequently retained as an indicator of structural characteristics of

the areas or objects under observation. These SARs can also measure the cor-

relation coe�cient for the HH and VV returns, which can be considered as a

measure of how alike the portions of the areas or objects are.

Radar images are composed of many dots, or picture elements. Each pixel

in the radar image represents the radar backscatter for an area on the ground:

Bright areas represent high backscatter (bright features mean that a large frac-

tion of the radar energy was re
ected back to the radar), while darker areas in

the image represent low backscatter (dark features imply that very little energy
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was re
ected back to the antenna). Backscatter for a target area at a particular

wavelength varies because of several conditions, as the size of the scatterers in

the target area, the moisture content of the target area, the polarization of the

pulses, the values of emitted wavelengths, and the observation angles.

A rule that helps interpreting the radar images is that the brighter the

backscatter on the image, the rougher the surface being imaged. Flat surfaces

that re
ect little microwave energy always appear dark in radar images. Vege-

tation is usually moderately rough on the scale of most radar wavelengths and

appears as gray in a radar image. Some areas not illuminated by the radar,

like the back slope of mountains, are in shadow, and appear dark. Roads and

freeways are 
at surfaces so they appear dark. Backscatter is also sensitive

to the target's electrical properties, such as water content: Wetter objects ap-

pear bright and drier targets appear dark (with the exception of smooth bodies

of water, which behave as 
at surfaces and re
ect incoming pulses away, thus

they appear dark). Backscatter also varies depending on the use of di�erent

polarization and observations angles: Low incidence angles (perpendicular to

the surface) will result in high backscatter, while it decrease with increasing

incidence angles.

4 Application of ICA to SAR imagery process-

ing and Experimental Results

Over the next section it is shown how independent component analysis by neural

networks may be advantageously employed to enhance remote sensing data on

real-world SAR imagery.

4.1 Independent component analysis applications to re-

mote sensing

Very recently there has been interest in the use of independent component anal-

ysis methods for remote sensing. The use of principal component analysis for

SAR imagery and remote sensing in general has been examined and well under-

stood (Fiori & Piazza, 2000; Costa & Fiori, 2001; Cheng & Miller, 2002), while

there has been much less work carried out about the use of ICA in image analy-

sis. The existing contributions in this �elds concern mainly the three following
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topics:

� Speckle reduction: A role played by the independent component analysis

in synthetic aperture radar data processing is image speckle reduction:

The SAR data can be considered as a mixture of target signals and some

complex noises. ICA methods may be used to separate the noise from the

signals as much as possible.

� Feature extraction: Perhaps the most important role of independent com-

ponent analysis in SAR imagery processing is feature extraction for clas-

si�cation. Selected independent components may be used to form feature

vectors for classi�cation. ICA has been found to perform better than PCA,

as comparable classi�cation percentage is achieved with less independent

components than principal components (Chen & Zhan, 2000).

� Data fusion: Another important role of independent component analysis is

in SAR data fusion that allows to advantageously employ the data redun-

dancy provided by radar measurements. When more sensors are available

to observe the same area or objects on the best extracted component im-

ages may be merged using appropriate criteria. It has been shown that

the image obtained can be more informative than the original images in

any spectral band (Chen & Zhan, 2000).

Other interesting notes on the theory and applications of neural ICA to remote

sensing may be found on the recent book by Chicocki and Amari (2002).

In the present paper, we consider the problem of noise removal by inde-

pendent component extraction. The algorithms were implemented in Matlab

language and ran on a 500MHz, 64MB machine.

4.2 SAR data and results of noise removal by ICA

The considered image data is from an agricultural area near the village of

Feltwell, United Kingdom and consists of 9 channels of SAR images: The data

consist of three frequency bands (denoted, respectively, with c, p, and l); in each

band there are three di�erent polarizations (HH, HV, and VV); the available

SAR images are depicted in the Figure 4. It is interesting to observe the di�er-

ences in the recorded images for the di�erent frequency-bands: It clearly appears
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c−HH c−HV c−VV

l−HH l−HV l−VV

p−HH p−HV p−VV

Figure 4: Nine channels of SAR images of an agricultural area in the United

Kingdom.

that SAR is sensitive to di�erent features of the observed areas depending on

the frequency of the emitted electromagnetic waves.

The practical application of ICA algorithms to these 2-dimensional data

requires to perform the following pre-processing steps:

1. Each image is 250 � 250 pixels bitmap, that should �rst be vectorized,

thus the set of available images gives rise to a 9� 62500 data-matrix;

2. The data-matrix may be linearly normalized in order to transform the

range of pixel intensity from the natural domain into a conventional data-

domain, for instance [�1;+1]; in the present case, this operation is not
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necessary and is therefore omitted.

3. The normalized data should now be subjected to pre-whitening, which

consists in removing �rst-order and second-order statistics from the data.

Some ICA algorithms explicitly require this operation to be performed,

while other known algorithms do not need pre-whitening; however, it has

been experimentally observed that whitening facilitates independent com-

ponents extraction, because it facilitates convergence (Giannakopoulos,

Karhunen & Oja, 1999); also, the analysis of the covariance matrix of

data, and in particular of its spectrum, may reveal some interesting prop-

erty about the data's information-structure dimension.

4. ICA applied to the whitened data allows extracting the desired number of

independent components. In the present context the model of the data is

linear, real-valued, and instantaneous.

5. Re-normalization of extracted components and restoration of the original

2-dimensional size of data allows then results visualization. In the present

context we perform blind separation of a SAR image from noises, thus it

is supposed that the obtained results have a recognizable meaningful.

On the basis of the above-recalled algorithm, we proceeded �rst to data-

preparation and pre-processing. The whitening operation, in particular, is quite

meaningful: The 9� 9 data-covariance matrix has well-ordered eigenvalues, as

clearly shown by the Figure 5; the fact that 4 eigenvalues out of 9 are signi�-

cantly larger than the remaining eigenvalues leads to conclude that by projecting

the data over the basis formed by the four principal eigenvectors a signi�cant

data-size reduction may be achieved with a negligible loss of information. The

resulting transformed data-matrix has then the size of 4 � 62500. the small-

est remaining (non-zero) eigenvalue is 375:06 and the largest remaining (non-

zero) eigenvalue is 3536:62. The pre-whitening makes the covariance matrix of

the whitened data an idenntity: In this case the actual covariance matrix of

the reduced-size data di�ers from an identity by a factor of 2:2 � 10�13. The

whitened data have now been processed by three di�erent independent compo-

nent analysis algorithms:

� The dICA+ software (Frulloni & Fiori, 2002) is based on a cascade neu-

ral network by Thawonmas et. al (1999); this method extracts the com-
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Figure 5: Eigenvalues of the 9� 9 SAR-data covariance matrix.

ponents sequentially and iterates the whole data-stream several times in

order for the active neuron in the cascade to properly extract each source

signal.

� The FastICA software is based on a generalized-Hebbian learning theory

and �xed-point optimization (Hyv�arinen & Oja, 1997); it has been used

in parallel mode.

� The MEC learning rule is based on a rigid-body learning theory applied

to kurtosis extremization (Fiori, 2002b); it extracts the independent com-

ponents in a parallel way.

The �nal result of elaboration is shown in the Figure 6 for the dICA+, Figure 7

for the FastICA, and Figure 8 for the MEC-ICA algorithm: Four independent

components where extracted, and one of them clearly appears as the true SAR

image. In the three experiments, the extracted meaningful component exhibits

a better quality than the original SAR images.

In particular, for the dICA+ algorithm, the component IC1 looks the best

(least noisy) one, while the others appear as complex noises. The algorithm

autonomously ran for 83, 59, 32, 10 iterations of the data set for the �rst, second,

third and fourth neuron in the cascade, respectively, and a total computation

time of about 2 minutes and 6 seconds.

For the FastICA algorithm, the component IC2 looks the best one, the

others being complex noises. The algorithm autonomously ran for 21 iterations
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Figure 8: Final result of ICA elaboration by the MEC-ICA algorithm.

of the whole data set in the parallel mode and a total computation time of about

1 minute and 36 seconds.

For the MEC-ICA algorithm, the component IC4 looks the least noisy one.

The shown results pertain to the use of just the �rst 20; 000 learning data out of

the 62; 500 available and the algorithm ran for about 16 seconds. The number

of learning steps was chosen by observing the two curves characterizing the

MEC-theory: The network's kinetic and potential energy (Fiori, 2002b); they

are shown in the Figure 9.

5 Conclusion

The aim of this work was to present an overview of independent component

analysis technique based on neural networks, with the aim to provide a state-of-

the-art survey of the theoretical streams in this research area and a brief review
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Figure 9: MEC network's kinetic and potential energies during learning over

the �rst 20; 000 data-points out of the 62; 500 available.
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of some applications of engineering interest. We also focused on a particular ap-

plication dealing with synthetic aperture radar imagery processing, and brie
y

reviewed the features and main applications of synthetic aperture radar and

showed how independent component analysis by neural networks may be of use

in order to remove noise from these remote sensing data.
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