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Abstract

The aim of this research work is to present a detailed theoretical analysis of the
one-unit learning rule based on the rigid-bodies learning theory, specialized for first
principal/independent component analysis. The adaptation equations are regarded
as generators of weight-flows on a structured parameters space; the stationary points
of the learning equations are determined and their stability is proven through a
suitable Lyapunov function. The neuron is also excited with both synthetic and
real-world signals in order to numerically investigate its behavior, and eddy-current-
signal processing is carried out as an application of the developed independent
component analysis algorithm to non-destructive evaluation of metallic objects.

Key words: One-unit neural system; Unsupervised learning theory; Independent
component analysis; Principal component analysis; Rigid-body dynamics; Pattern
recognition; Eddy-current (EC) phenomenon; Non-destructive evaluation (NDE).

1 Introduction

In an early report [17], a new class of learning rules for linear as well as non-
linear neural layers was introduced, which arises from the dynamics of rigid
bodies. Their efficiency in solving some orthonormal problems such as opti-
mal data representation by second-order statistics decomposition and blind
source separation from non-convolutional mixtures by higher-order statistical
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processing was experimentally proven. Later on, it was observed that the men-
tioned class of learning algorithms is a subset of a larger family of adaptation
rules and a general theoretical framework which explains many related con-
tributions found in the scientific literature was proposed. The general theory,
termed Stiefel manifold and Lie group learning, was presented in [19,21]. The
main idea behind these contributions is to exploit the mathematical knowledge
of the geometric structure of the spaces that the networks’ parameters belong
to, through the basic instruments provided by differential geometry, as recently
suggested for instance by Amari [2], Nishimori [31] and Edelman-Arias-Smith
[16], among others; our work also found its roots in some impressive papers
on second-order optimization techniques (see e.g. [1,35]) exploiting physical
parallelisms.

The aim of this paper is to study some particular theoretical aspects of one-
unit learning by rigid-bodies (or ‘mechanical’) rule with reference to the widely
investigated topic of first principal/minor component analysis (for an up-to-
date review see e.g. [10,13,18,32]) and real/complex-valued independent com-
ponent analysis (see [8,20,23,24,28] and references therein).

As mentioned, the mechanical learning paradigm arises from the equations
describing the dynamics of an abstract rigid body, embedded in a force field,
which is formed by unitary-mass point-particles positioned over mutually or-
thogonal axes at unitary distance from axes’ origin. If w(t) ∈ IRn describes
the position at time t of a single mass (or, equivalently, the configuration or
internal state of a single neuron), the equations governing system’s dynamics
write [17]:

w′ = Aw, p = −µAw , f = −2∇wU , (1)

A′ =
1

4
[(f + p)wT − w(f + p)T ] . (2)

In the equations, the prime denotes derivation with respect to time, the super-
script T denotes transposition, A ∈ IRn×n is a kind of angular speed, p ∈ IRn

represents the braking effect produced by the fluid, permeating the space that
the body moves within, having viscosity µ, and f ∈ IRn represents the force
field which makes the body moving. Here it is supposed that the force field
derives from a potential energy function U : IRn → IR, which describes the
n-input/1-output network task.

The basic properties of the system (1)+(2) may be summarized as follows:

• Let us denote by SO(n, IR) the special orthogonal group, that is the sub-
set of IRn×n of the orthogonal matrices with positive unitary determinant;
SO(n, IR) is a Lie group with Lie algebra so(n, IR), i.e. tangent space at the
origin: so(n, IR) is known to be the set of skew-symmetric matrices, that is
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so(n, IR)
def
= {X ∈ IRn×n|XT = −X} [26]. It is now immediate to verify that

if A(0) ∈ so(n, IR) then the equation (2) provides A′(t) ∈ so(n, IR) and thus
A(t) ∈ so(n, IR), because so(n, IR) is a linear space.

• Let us denote by Sn−1 the unit-radius sphere, defined as Sn−1 def
= {w ∈

IRn|wTw = 1}. Because of the skew-symmetry of A(t) we see from the first
of equations (1) that if w(0) ∈ Sn−1 then w(t) ∈ Sn−1 for all t. Also, if we
denote by TwSn−1 the tangent space to the n-sphere at w, it readily proves
that p, w′ ∈ TwSn−1.

• The equilibrium conditions for the system (1)+(2), i.e. the equilibrium
conditions for the learning rule, write w(t?) ∈ ker{A(t?)}, f(t?)w

T (t?) −
w(t?)f

T (t?) = 0n, w(t?) ∈ Sn−1, A(t?) ∈ so(n, IR), where ker{·} denotes the
null-space (kernel) of the considered linear operator, the symbol 0n denotes
the null element of IRn×n and t? denotes the instant in which the equilibrium
holds. It is important to recall that both w(t) and A(t) are unknown and
that the force-field f(t) is in general a non-linear function of the network’s
weights, thus the above conditions are the most general equilibrium results.

• As a mechanical system, stimulated by a conservative force field, tends to
minimize its potential energy U , the set of learning equations (1)+(2) for
a neural unit with weight-vector w may be regarded as a non-conventional
optimization algorithm; if C(w) represents the cost associated with neu-
ron’s parameters misadjustment with respect to a pre-defined task, assum-
ing U(w) ∝ C(w) allows the network to learn the task.

2 The case of first principal/minor component analysis

Let us consider a linear neural unit described by y(t) = wT (t)x(t), where
x ∈ IRn denotes the neuron’s input random vector and y ∈ IR describes the
neuron’s response, at time t. In the hypothesis that the multivariate random

vector x is zero-mean and has finite covariance matrix Cx
def
= E[xxT ], the

first principal component analysis of x consists in the projection of the vector
stream over an axis described by wpc such that the variance of the projection
is maximal, for a unit-length projector [32,41]:

wpc = arg max
wT w=1

Ex[(w
T x)2] .

The first minor component analysis searches instead for the direction wmc that
the minimum-variance projection corresponds to:

wmc = arg min
wT w=1

Ex[(w
Tx)2] .
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In this section we recast the above optimization problems as a one-unit rigid-
body learning task, determine the stationary solutions of the learning equa-
tions and show, through a suitably constructed Lyapunov function, their
asymptotic stability within their basins of attraction.

2.1 Potential energy function and force field

In the context of one-unit neural networks, both principal/minor component

analysis problems are well-described by the cost function C(w)
def
= 1

2
ηEx[y

2] =
1
2
ηwTCxw (where η > 0 corresponds to minor component analysis and η <

0 corresponds to principal component analysis), to be minimized under the
constraint that w ∈ Sn−1.

In the context of neural learning by rigid-body dynamics, the above optimiza-
tion problem may be solved by identifying U(w) = C(w), which gives rise to
the force field:

f = −2ηCxw . (3)

In the following we aim at giving a detailed analysis of this case study. Some
interesting remarks are that:

• The stability of the learning system does not depend on the sign of η (con-
trary to some principal/minor component extraction neural algorithms that
do not exhibit such interesting symmetrical behavior [22]).

• Due to their intrinsic properties, second-order (dynamical) systems exhibit
a low-pass behavior on input stimuli, which has the same effect of statisti-
cal expectation for ergodic signals, thus the same learning system may be
employed to solve the stochastic version of the above optimization problem,
where Cx is unknown and only x(t) is available at time t, by simply replac-
ing the vector-field f with its stochastic approximation f ? = −2ηxy. The
last expression justifies why the vector f ? is referred to as Hebbian forcing
term.

• For the sake of completeness, it is worth noting that the extraction of a
single component with the proposed learning system is a case study, but
the same learning system allows for parallel extraction of several princi-
pal/minor components as was illustrated numerically in [17].

• Apart from the sign of the constants η and µ, their values affect the behavior
of the learning system. An empirical discussion of their choice may be found
in [17], while a formal investigation of their effect on learning dynamics was
carried out for some special cases in [21].
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2.2 Theoretical analysis: One-unit PCA case

To initiate the analysis, let us rewrite equations (1)+(2) with the force field
(3) in a more convenient way. By computing the eigenvalue decomposition
of the covariance matrix Cx = ED2ET , where E, ET ∈ SO(n, IR) and D2 =
diag(D2

1, D
2
2, . . . , D

2
n) with |D1| > |D2| > · · · > |Dn|, it is possible to define

the new state variables:

v
def
= ET w , B

def
= ET AE . (4)

Note that the eigenvalues of the covariance matrix have been supposed dis-
tinct, so that the matrix D2 is invertible. This assumption is motivated by
the observation that in most practical signal processing tasks Cx is full-rank.
Of course, even if this falls outside the scope of the present contribution, the
analysis of the nearly-defective case would be worth considering.

On the basis of these transformations, the learning equations recast into:

v′ = Bv , (5)

−4B′ = 2η[D2, vvT ] + µ{B, vvT} , (6)

where v ∈ Sn−1 and B, B′ ∈ so(n, IR), because the transformations (4) define
an isometry on IRn and a skew-symmetric similarity, respectively; also, we

used the commutator and anti-commutator operators defined by [X, Y ]
def
=

XY − Y X and {X, Y } def
= XY + Y X, respectively. It is also interesting to

note that, by defining Z
def
= vvT , the equations above rewrite as:

Z ′ = [B, Z] ,

−4B′ = 2η[D2, Z] + µ{B, Z} ,

that is in the standard Lie-bracket form [26].

In the new basis, the potential energy function writes UE(v) = 1
2
ηvTD2v, while

the equilibrium conditions read now:

v ∈ ker{B} , [D2, Z] = 0n ; (7)

in fact, note that if v ∈ ker{B} then {B, Z} = 0n. As D2 is diagonal invertible,
D2 and Z commute iff v has the structure vi? = δk,i, k ∈ {1, 2, . . . , n}, where
δi,k denotes the Kronecker’s delta. In this case, the potential energy function

simplifies into UE(v?)
def
= 1

2
ηD2

k. The function UE(v) minimizes at equilibrium,
thus we have two cases: If η > 0 then k = 1 (i.e. w equals the eigenvector

5



corresponding to the largest neuron’s response variance), while if η > 0 then
k = n (hence w corresponds to the minimal neuron-input covariance matrix’s
eigenvalue).

In order to ascertain the stability of the learning system with the considered
force field, let us show how it is possible to construct a Lyapunov function for
the system which ensures asymptotic convergence to one of the local minima
of U . It is worth recalling that a Lyapunov function is always associated to a
basin of attraction of a stationary point, i.e. it ensures convergence provided
that the parameters-trajectory originates sufficiently close to the expected
solution. In order to show the existence of a positive and decreasing function
of the time, note that from relationship (5) it follows:

v′′ = B′v + Bv′ . (8)

The evaluation of the first term on the right-hand side requires the computa-
tion of:

2η[D2, Z]v = 2∇vUE − 4UEv ,

µ{B, Z}v = µv′ ,

where the properties vT v = 1 and vT Bv = 0 were used. Let us now evaluate
the term dvT v′′: On the basis of the above equivalence we have −4dvTB′v =
2U ′

Edt + µ‖v′‖2
2dt, while dvT Bv′ = 0. As a consequence, the following identity

holds true:

−4(v′)T v′′dt = 2U ′
Edt + µ‖v′‖2

2dt .

By integrating both sides of the above equation with respect to the time, over
the interval [0, t], the following balance equation is readily obtained:

−2‖v′‖2
2|t0 = 2UE|t0 + µ

t∫

0

‖v′‖2
2dt .

Hence, by the definition of neuron’s kinetic energy K(t)
def
= 1

2
‖v′(t)‖2

2 =
−1

2
vT (t)B2(t)v(t), we find the final relationship:

K(t) − K(0) = −1

2
[UE(t) − UE(0)] − 1

2
µ

t∫

0

K(τ)dτ . (9)
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A Lyapunov function H(t) for the neuron writes thus:

H(t)
def
= K(t) +

1

2
[UE(t) − Umin

E ] , (10)

where Umin
E is the minimum value of UE(t) within the basin of attraction; note

that the existence of the minimum is certain because UE is a continuous func-
tion defined on a compact manifold (the hyper-sphere Sn−1). The Lyapunov
function is nothing but the Hamiltonian of the neuron: It writes as the sum of
two non-negative continuous quantities, thus H(t) ≥ 0, moreover, it satisfies
H(t) = H(0) − 1

2
µ

∫ t
0 K(τ)dτ , thus it also holds:

H ′(t) = −1

2
µK(t) ≤ 0 , (11)

where the derivative zeros iff v ∈ ker{B}; also, with reference to each basin of
attraction for v, H(t) minimizes at the local minima of UE , as anticipated.

2.3 Extension to robust principal/minor component analysis

An useful extension of the above-developed theory, concerning the definition
of a potential energy function that still makes the single-unit network able
to compute principal/minor-like components, obtains by replacing the opti-
mization of the variance of neuron’s response with the optimization of an
average non-quadratic function of neuron’s response. This allows for robust
principal/minor components estimation, that helps alleviating the estimation
difficulties related to noise, disturbances, and statistical outliers [29,33]. Neu-
ron’s learning may be performed with equations (1)+(2) and its behavior
depends on the shape of the cost functions to be optimized corresponding to
the selected potential energy function.

As an example, let us consider the case that the search for the minima of

CR(w)
def
= ηEx[Ψ(wTx)] drives neuron’s learning, where Ψ(·) is a monotoni-

cally increasing non-negative continuous function, with a only minimum in 0,
increasing no more than quadratically, i.e. Ψ(y) ≤ y2/2 [29]. In this case, if
px(x) denotes the probability density distribution of the multivariate neuron’s
input, we have:

0 ≤ 2

η
CR(w) = 2

∫

IRn

Ψ(wTx)px(x)dxn ≤
∫

IRn

(wTx)2px(x)dxn =
2

η
U(w) ,

thus the quadratic potential energy U(w) makes the Hamiltonian (10) be again

7



a valid Lyapunov function to prove the existence of asymptotically stable
neural configurations.

2.4 An illustrative computer simulation

As an illustrative example, let us consider the results obtained with:

Cx =




0.9 0.4 0.7

0.4 0.3 0.5

0.7 0.5 1.0




, w(0) =




0

0

1




, A(0) = 03 ,

which is a sub-case of the example proposed by Chen, Amari and Lin in [10].

In the first experiment we chose η = −0.5 and µ = 4 in order to extract the
principal eigenvector. The learning equations have been discretized in time
with ∆t = 0.001. The results shown in the first row of Figure 1 illustrate the
behavior of functions UE and H , as well as of the state-vector w(t), which
are as expected. In fact, the Lyapunov function H(t) vanishes to zero when
the algorithm reaches its steady-state, thus K(t) vanishes when the potential
energy function UE(t) minimizes. The stochastic version of the same learning
rule, endowed with the Hebbian forcing term, has been implemented, too: The
obtained numerical results are coherent.

The second row of Figure 1 refers instead to the selection η = 3, µ = 6,
∆t = 0.0015, in order to extract the minor eigenvector. Again the results are
as expected, both for the non-stochastic and stochastic cases.

3 The case of independent component analysis

The independent component analysis (ICA) aims at extracting independent
signals from their linear mixtures or to extract independent features (as latent
variables) from signals having complex structure. Published books on ICA (in
quo totum continetur) are [8,28]. A recent overview of independent component
analysis, along with a discussion of its relationship with factor analysis and
projection pursuit, has been recently presented in [23].

A way to design an independent component analysis method is to employ
the maximum or minimum kurtosis principle: Under some conditions [12],
the output of a linear neuron with multiple inputs x(t) described by y(t) =
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Fig. 1. Simulation results for first principal component analysis (fpca) and first
minor component analysis (fmca). The spheres are used to visualize the pathways
followed by neuron-state w during the learning phase. The graphs on the left show
the values of the potential energy function UE (dot-dashed line) and the Lyapunov
function H (solid line) during learning.

wT (t)x(t) contains an independent component of the input if the weight-vector
w maximizes or minimizes the fourth moment of neuron response:

wic = arg max
wT w=1

±Ex[(w
T x)4] . (12)

Such technique derives from the knowledge of the properties of statistical
cumulants and their transformation through a linear MIMO (multiple-input,
multiple-output) system (see e.g. [14]).

The observed signal model is x(t) = Ms(t), where s(t) ∈ IRn is a vector-
signal with statistically independent components, and M ∈ IRm×n is a full-
column rank matrix describing the mixing of the n independent components
into the m observable signals, or the expected relationship between the latent
variables and the observable variables. Apart from special cases (namely in
under-determined ICA, where additional assumptions are necessary for source
recovery) the number of observations m should exceed or equate the number of
independent sources n. With the convention that sr(t) denotes the rth compo-
nent of the vector s(t), usually the hypotheses made on the source stream are
that each sr is an ergodic stationary IID (independent, identically distributed)
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random signal with zero mean (Es[sr] = 0), unitary variance (Es[s
2
r] = 1) and

is statistically independent of each other at any time. It is also worth recall-
ing that, under the above hypotheses, the kurtosis of the signal sr defines as

κr
4

def
= Es[s

4
r ]−3. The value of the kurtosis gives rise to a classification: When a

signal has negative kurtosis it is termed sub-Gaussian or plati-kurtotic, while
a signal having positive kurtosis is termed super-Gaussian or lepto-kurtotic; a
signal with zero-kurtosis is termed meso-kurtotic: Gaussian signals are meso-
kurtotic, but of course a signal needs not to be Gaussian to have zero-kurtosis.

In practical situations, it is also common to hypothesize that the signals in x
are mutually uncorrelated, which is equivalent to say that the mixing matrix
is orthogonal; without any loss of generality we can also suppose m = n, thus
ultimately M ∈ SO(n, IR). It is worth mentioning that when the observable
signals are not uncorrelated, a pre-processing stage known as ‘whitening’ or
‘sphering’ may be always performed, which has the twofold effect to remove
the second-order dependency between the signals and to reduce the number
of ‘geometrically independent’ observations to n.

3.1 Potential energy function and force field

In this section, we again recast the original optimization problem into a one-
unit rigid-body learning task, determine the stationary solutions of the learn-
ing equations and show their asymptotic stability within their basins of at-
traction.

In the present context, the optimization principle (12) gives rise to the poten-
tial energy function:

U(w)
def
=

1

4
η{Ex[(w

Tx)4] − 3} , (13)

with η being again a real number allowing to switch between the maximization
and minimization problems. The above energy function generates the following
forcing field along with its stochastic approximation:

f = −2ηEx[(w
Tx)3x] , f ? = −2ηxy3 . (14)

As in the previous section, in the following we wish to investigate the structure
and the behavior of mechanics-like learning equations under the above force
field.
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3.2 Theoretical analysis: One-unit ICA case

In the present context it is worth performing the variable changes v
def
= MT w

and B
def
= MT AM , which allows recasting the fundamental learning equations

(1)-(2) into:

v′ = Bv (15)

4B′ = −2ηEs[y
3(svT − vsT )] + µ{B, vvT} , (16)

while the potential energy function, in the new basis, writes:

UM(v)
def
=

1

4
η{Es[(v

T s)4] − 3} . (17)

Note that, by the hypotheses, M is an orthonormal matrix, thus the trans-
formation of w into v describes an isometry in IRn, hence w ∈ Sn−1 implies
v ∈ Sn−1, thus v(t) belongs to the unit n-sphere at any time. Also, the fact
that the equations may be rewritten equivalently in term of s means that the
behavior of the learning system is independent of the mixing operator M ,
that is an important property known as equivariancy [9] (in other terms, it
may be envisaged that the independent component analysis algorithm under
investigation provides an equivariant estimation of the source stream).

From equations (15)-(16) it follows that the equilibrium conditions for the
learning system are:

v ∈ ker{B} , Es[y
3s]vT − vEs[y

3sT ] = 0n , (18)

where y = vT s. The second condition would imply the symmetry of the matrix
Es[y

3s]vT . In order to write this constraint in a more expressive way, it pays
to compute each of the factors Es[y

3sr] in closed form. Denoting with vr the
entries of vector v, on the basis of the hypotheses made on the multivariate
signal s, we have:

Es[y
3sr] =

∑
i

∑
j

∑
k

vivjvkEs[sisjsksr] =

= Es[s
4
r]v

3
r + 3(1 − v2

r)vr = κr
4v

3
r + 3vr .

The (i, j)th component of Es[y
3s]vT has thus the expression (κi

4v
3
i + 3vi)vj ,

therefore the second equilibrium condition in (18) rewrites:

(κi
4v

2
i − κj

4v
2
j )(vivj) = 0 , ∀(i, j) ∈ {1, 2, ..., n}2 . (19)
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The above conditions are clearly fulfilled for those values of the indexes i and
j such that vi = 0 (so that the second parentheses vanish) or when i = j

(so that the first parentheses vanish), thus they define the subset N def
= {i ∈

{1, ..., n}|vi 6= 0}. This, in turn, induces the definition of a bijective map
R(r) : N → {1, ..., n} that assigns to each index r of a non-null element
of v one, and only one, index of an element in the same vector that is in
correspondence with it on the basis of the relationship κr

4v
2
r − κ

R(r)
4 v2

R(r) = 0.
Note that such a map is not unique.

A point v? in IRn that of course satisfies conditions (19) is any canonical
vector of IRn, that is vi = ±δr̄,i, that gives UM(v?) = η

4
κr̄

4: As the system seeks
for the minimum of UM , the value r̄ corresponds to the most lepto-kurtotic
independent signal if η < 0, or the most plati-kurtotic independent signal if
η > 0. As a matter of fact, as y = vTs, the result vi = ±δr̄,i implies that
yi = ±sr̄, therefore the neuron is able to separate out one of the independent
signals that presented mixed to other signals at its input.

This equilibrium point is the only extremal one, in fact the other vectors
satisfying (19) are sub-optimal. In order to show this property of the potential
energy function, it pays to express the potential function in closed form by
taking into account that:

Es[(v
T s)4] =

∑
i

∑
j

∑
k

∑
r

vivjvkvrEs[sisjsksr] =

=
∑
r

Es[s
4
r]v

4
r + 3

∑
r

(1 − v2
r)v

2
r ,

thus ultimately UM(v) = 1
4
η

∑
r κr

4v
4
r ; note that the summation may run over

{1, ..., n} or N , as well. This expression allows us to show the sub-optimality
of the equilibria different from the canonical vectors: In fact, the potential
energy function computed in a point vsub

? satisfying (19) readily proves to
write:

UM (vsub
? ) =

η

4

∑
r∈N

κ
R(r)
4 v2

rv
2
R(r) . (20)

The fact that
∑

r v2
r = 1 implies v2

r ≤ 1, thus the majorization 4|UM(vsub
? )/η| ≤∑

r∈N |κR(r)
4 |v2

R(r) holds true; also, the equality may hold only when vR(r) =

±δr,r̂ for some r̂. By denoting r̄ = arg maxr∈N{|κR(r)
4 |}, we arrive at the

conclusion that 4|UM(vsub
? )/η| ≤ |κR(r̄)

4 |, when the equality may hold only
if vR(r) = ±δr,r̄

Equations (18) characterize the equilibrium points of the learning system, and
we wonder if it is possible to prove the existence of a Lyapunov function for
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the system ensuring its convergence (at least locally). The Hamiltonian of the
neuron is again a good candidate, provided that it satisfies the balance equa-
tion (9). Although this equation was demonstrated for the specific case of a
quadratic potential energy function, it may be proven that it holds irrespec-
tive of the structure of the potential energy field [19,21]. It follows that the
form (10) does represent a valid Lyapunov function for the system, in fact,
the function UM(v) is continuous and defined on a compact manifold and thus
possesses a minimal value, therefore H(t) may be defined to be positive and
again it is such that H ′(t) ≤ 0, ensuring the convergence of the learning system
in the one-unit ICA case, too.

3.3 Illustrative numerical results on one-unit ICA

As a case-study, let us consider the case that n = 2 and that the source
signals have kurtoses κ1

4 = 1 and κ2
4 = 5, and let us assume η = 4. In this case

the rotated-basis weight-vector has components v = [v1 v2]
T , which satisfy

v2
1 + v2

2 = 1. Due to the sign-blindness of the ICA, we can restrict our analysis
to vr ∈ [0, 1]. If v differs from a canonical vector, both v1 and v2 differ from
zero, thus the equilibrium condition would imply v2

1 = 5v2
2: The only point on

the circle S1 satisfying this constraint is v? =
[√

5
6

√
1
6

]T
, where the potential

energy function equals −26
36

that is greater than −5. This means that the
solution v? is sub-optimal and, therefore, the only optimal solutions remain
the canonical vectors.

Another interesting example is the following: Let us suppose, again in the 2-
sources problem, that κ1

4 = κ2
4 = κ̄ > 0 and η = 4. In this case the equilibria

are at v2
1 = v2

2 thus the only non-canonical feasible point in the positive octant

is v? =
[√

1
2

√
1
2

]T
(irrespective of the value of κ̄); in this point the potential

energy function has the value −κ̄/2 > −κ̄, thus, again v? is a sub-optimal
configuration.

Let us now show two computer-based simulations that should serve as il-
lustrations for the two cases-study just discussed. The first one concerns the
implementation of learning system with forces expressed in closed form, which
allows controlling exactly the sign and the magnitude of the source-signals’
kurtoses (in the 2-sources problem). It is worth to observe that the forcing
term writes symbolically f = −2η(κs

4 ◦v3 +3v), where κs
4 denotes the kurtoses

vector, namely κs
4

def
= [κ1

4 κ2
4]

T , the (·)3-exponentiation acts component-wise,
and the symbol ◦ denotes the Hadamard product 1 . Now, the learning equation

1 The Hadamard product between two tensors of equal size is a tensor of the same
size obtained by component-wise multiplication of the two factors.
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(16) involves the term fvT − vfT , which readily proves to simplify into:

fvT − vfT = −2η[(κs
4 ◦ v3)vT − v(κs

4 ◦ v3)T ] .

The result of the numerical simulations are shown in the Figure 2, in the two
different situations just discussed. The learning parameters have values µ = 4
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Fig. 2. Simulation results for one-unit independent component analysis: Controlled
experiments over synthetic signals. Left: Values of the potential energy function UE

(dot-dashed line) and the Lyapunov function H (solid line); Right: Course of the
rotated-basis weights v1 (solid) and v2 (dashed).

and η = −0.4, and the sampling-step has value ∆t = 0.001.

Another interesting experiment concerns the extraction of an independent
signal from a mixture of real-world signals, which are four gray-level 100×100
digital images. The original images in the multivariate signal s ∈ IR4 are shown
in the Figure 3, and their kurtoses are (from left to right in the Figure): 1.9809,
−0.7761, −0.8430 and −1.6713.

It is well-known that the separation of real-world natural images is often a
difficult task, because they represent neither IID sequences nor completely
independent source signals. To show this in the present case, we computed for
instance the covariance matrix of the four vectorized images: By taking into
account that the pixel-values range in [0, 255], it is in fact worth examining
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Fig. 3. Original natural images (top) used in the four-source-separation problem,
and a linear mixture of them (bottom).

the structure of the covariance Cs
def
= Es[ss

T ], that has been computed to be:

Cs = 103 ×




3.1878 1.0898 0.0416 −0.5739

1.0898 2.6651 0.0148 −0.6820

0.0416 0.0148 2.1062 0.0036

−0.5739 −0.6820 0.0036 4.4301




;

it looks non-diagonal, confirming that any source is highly correlated to each
other. Also, in the Figure 4 it is shown the auto-correlation function of the first
image reported in Figure 3: Its non-sharp shape confirms its non-IID nature.

By choosing η > 0 in the algorithm we can extract the least kurtotic signal,
while choosing η < 0 allows extracting the most kurtotic image from the
mixture. In order to quantitatively assess the result of this experiment, the
interference-to-signal ratio (ISR) was used as performance measure, which is
defined as:

ISR
def
=

‖wTM‖2
2

‖wT M‖2∞
− 1 ≥ 0 .

It bases on the knowledge that the optimal (separating) weight-vector w must
cancel the contribution given by matrix M except that for one column; in
the above formula, notation ‖ · ‖∞ denotes the L∞ (max-abs) norm. The
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Fig. 4. Auto-correlation function of the signal obtained by vectorizing the first of
source images in Figure 3 and by previous mean-value removal.

interference-to-signal ratio is non-negative and its nullity holds only when
one component has been perfectly extracted from the mixture 2 . In a real-
world context, of course some residual interference should be tolerated. Also,
during the neuron’s learning phase the value of neuron’s kinetic energy K(t) is
recorded, as it represents the internal state of the neuron, which should quiet
after sufficiently long time as the learning progress goes on.

The Figure 5 refers to the least-kurtotic image extraction (η = 0.4, µ = 4,
∆t = 0.001) and to the most-kurtotic image extraction (η = −0.5, µ = 20,
∆t = 0.001) from the four-images linear mixture. These results have been ob-
tained with a training-set containing 10, 000 input patterns randomly picked
during the training in order to emulate stationarity [4], which helps to alle-
viate the problem of time-correlated observations 3 . Figure 6 depicts the two
extracted images, which have been recovered faithfully from the linear mix-
ture.

3.4 Extension to multiple-component extraction and non-stationary case

The above sections described the procedure for extracting one component
on the basis of the maximum/minimum kurtosis discrimination principle. An
useful extension should allow for the estimation of the desired number of in-

2 In fact, note that ISR = ‖v‖2
2/‖v‖2∞−1. For a canonical vector v = δi,r, therefore,

it holds ISR = 0.
3 It is worth noting that, when dealing with instantaneous (i.e. non-convolutional)
mixtures, this practical ‘trick’ may be always exploited in order to improve the
learning convergence speed because it does not destroy the structure of the data.
After learning, for source recovery, of course the neuron must be presented with the
data in the right (natural) order.
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Fig. 5. Least-kurtotic and most-kurtotic image extraction: Neuron kinetic energy K
(left-hand column) and ISR index (right-hand column) versus time.
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Fig. 6. Least-kurtotic and most-kurtotic image extraction: Recovered images.

dependent components. However, this aspect opens the question of the exact
knowledge of the number of independent signals which give rise to the mixture,
and of the possible time-variability of this number (in a non-stationary envi-
ronment like in a telecommunication scenario, sources may continually appear
and disappear). It is not the aim of this paper to discuss in detail these topics,
but we wish to only cite two interesting solutions which have a general span
and may be applied independently of the kind of employed one-unit extraction
engines.

A solution to the multiple-component extraction based on a one-unit neural
engine exploits the property of linearity of the observed-signal model, and is
based on the well-known mechanism of deflation. It allows the sequential ex-

17



traction of one component at a time (see e.g. [38] and references therein); in
our experience with this method, it suffers from the progressive accumulation
of numerical errors and estimation inaccuracies from component to compo-
nent, thus it is reliable only in presence of a limited amount of components
(see e.g. [24]).

As mentioned, the problem of the estimation of the number of sources in a
mixture can be solved by second-order statistics analysis: An advantage of
signal pre-whitening by the eigenvalue decomposition of the observed-signal
covariance matrix is that a careful analysis of the spectrum of the covariance
may provide a very accurate estimate of the number of sources, either in
the case of noiseless or moderately noisy mixtures. A pervasive example of
application of such technique may be found, for instance, in [34], where a non-
stationary blind source recovery case was tackled by tracking over time the
number of independent components.

4 Application to non-destructive evaluation (NDE) problem

The eddy-current testing (ECT) [5,6] is a non-destructive evaluation (NDE)
technique especially well suited for metallic object inspection by a probe sys-
tem. The probe usually consists of a source coil and a pick-up coil connected
to a voltmeter. The probe allows for complex-voltage measurements whose
change is used for defect detection and identification with particular interest
into defect shape.

In ECT-NDE, the probe is slid over a conductive object. The exciter coil is
driven with medium-range frequency (< 100kHz) sinusoidal current producing
a magnetic field that induces eddy currents within the object near the exciter.
These currents produce their own magnetic fields, which are always in oppo-
sition to the exciter field. A part of the eddy currents experiences conductive
losses, therefore these counter-fields do not fully balance the exciting field.
This phenomenon may be equivalently thought of as the interrogating mag-
netic field which is back-scattered by the inner layers of the objects [11,39]. At
the level of the coil, the back-scattering phenomenon results in an impedance
change, which is composed by an equivalent differential resistance, accounting
for the energy loss in the metal, and a differential reactance that accounts for
the phase delay in the scattered field. The differential impedance is sensitive
to anomalies or perturbations (flaws) in the volume along the path of the
interrogating magnetic field, such as metal loss, cracks, corrosion or thinning.

A typical inspection is carried out in the following way. A conductive specimen
is supposed to be affected by a hidden defect located deeply in its volume: A
probe is moved on a grid over an accessible surface of the specimen and a set of
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differential complex voltage values are thus collected. A strong discontinuity in
the homogeneity of the impedance profile in a spatial location clearly evidences
the presence of a defect in that zone of the volume. On the basis of this
observation, a first automatic screening of the data is performed in order to
roughly localize an area of the surface centered around the defect, so that
the successive finer analysis is restricted to a narrower specimen’s volume. As
the distribution of the impedance depends on the location and shape of the
defect, it is possible to reconstruct the flaw’s profile by properly treating the
measured data [27].

When a defect is present on the surface of the specimen, in order to prevent
the evolution of the damage, it is important to detect, localize and size the
crack. However, the eddy current measurement might be corrupted by the skin
effect, the lift-off noise and by the generic uncorrelated noise. Prior to develop
a flaw detection/recognition system, each measure has thus to be restored, by
separately featuring e.g. the lift-off signal and the defect signal.

In the present work, the magnitude and the phase of the ECT signals, acquired
on the upper and lower sides of a specimen, have been considered as available
measures. In order to extract information from the measured data, a proper
signal processing algorithm should be designed. An ECT-NDE data processing
approach is proposed in this paper to remove the effects of the eddy-current
sensor drift during the horizontal/vertical scanning of an inspected metallic
plate.

Artificial neural networks based techniques have recently been applied to
the solution of electromagnetic problems (see e.g. [3,7,37,39] and references
therein), and it has been especially proven, by recent experimental research
works, that the use of ICA enables us to acquire additional knowledge from
measurements [25,36,40]. For further reading, a recent survey of successful
industrial applications of independent component analysis and blind source
separation may be found in [15].

4.1 Experimental set-up for the NDE problem

We analyze a set of experimental ECT-NDE data, provided by the Hungarian
Academy of Sciences [30]. The data have been acquired by a single pancake
exciting coil with FLUXSET sensor (for a detailed explanation of experimental
set-up see [30]). The tested specimen consists of a square plate (8× 8× 0.125
cm) of INCONEL material, which presents a rectangular thin crack (about
0.2 mm thick and 9 mm in length), located in a region of 2 × 2 mm width
around the plate center. The depth of the defect is about 20% of the plate
thickness. The scanned area is a region of 40 × 40 mm with 0.5 mm spacing
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along x and y axes; the output complex-voltage has been recorded on a grid
of 81 × 81 measurement points.

Figures 7 and 8 represent the magnitude abs(V ) and the phase arg(V ) of the
ECT-NDE voltage-signal in the cases of inner and outer defect, respectively.
Even if the plate has a constant horizontal thickness, the signal has a magni-
tude related not only to the defect but also to the sensor lift-off that varies
over the specimen surface: This creates a drift effect on the measurements.

−20
0

20
−20

0

20

0

0.1

0.2

x [mm]

ID defect − Amplitude

y [mm]

a
b

s(
V

) 
[V

o
lt]

−20
0

20
−20

0

20

−2.5

−2

−1.5

−1

x [mm]

ID defect − Phase

y [mm]

a
rg

(V
) 

[R
a

d
]

−20 −10 0 10 20
0.02

0.04

0.06

0.08

0.1

0.12

y [mm]

a
b

s(
V

) 
[V

o
lt]

−20 −10 0 10 20
−2.5

−2

−1.5

−1

y [mm]

a
rg

(V
) 

[R
a

d
]

Fig. 7. Magnitude and the phase of the ECT-NDE signal in the cases of inner de-
fect (ID). Two different views. (Top: Three-dimensional differential voltage surface.
Bottom: Projection over the y-z axis.)

From the experimental set-up, four different measurements are available: The
magnitude and the phase of the EC signal acquired from the inner side of
plate, and the magnitude and the phase of the signal pertaining to the outer
side of the plate. If a defect is present near one of the surfaces, a measure can
be considered as ID (inner defect) and the second one will be, necessarily, of
OD (outer defect) type. By using a single measurement, the detection of the
crack is not allowed because of two concurring problems:

• When the defect is located near the surface on the same side of the sensor
(ID), although the signal-to-noise ratio is high, it does not suffice to provide
the detection/recognition system a suitable knowledge to correctly locate
and size the flaw; indeed, as illustrated in the Figures 7 and 8, the magnitude
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Fig. 8. Magnitude and the phase of the ECT-NDE signal in the cases of outer defect
(OD). Two different views. (Top: Three-dimensional differential voltage surface.
Bottom: Projection over the y-z axis.)

and phase of the ID signal are corrupted by the lift-off noise, and the signal
takes its maximum value when the probe is close to the surface, rather than
in correspondence of the defect.

• When the defect is located far from the surface, that is for OD measurement,
the signal related to the crack is completely buried into background distur-
bance, due to the skin effect, to the lift-off noise and to the uncorrelated
Gaussian noise, as can be readily seen in the Figure 8.

If the electronic devices used to acquire the measures stay the same during
the ID/OD scans, we can suppose that, as opposite to random Gaussian noise,
the lift-off noise affects both the measurements in the same way. Thus, we can
make the reasonable hypothesis that the measured signals are linear mixtures
of different sources: The signal related to the defect and the one related to the
lift-off noise [36]. Of course, the involved signals as well as the mixing propor-
tions are unknown. This suggests that, on the basis of the ICA technique, a
way can be envisaged to extract the defect signal.
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4.2 Experimental results on the ICA-NDE problem

As mentioned, we hypothesize a linear model relating the independent signals
with the measures. Our proposal for processing the available data is to suppose
that the real and imaginary parts of the involved signals interact in an additive
way, thus the input signal x(t) ∈ IR4 to the neural network has the structure:

x
def
=




abs(V )ID cos[arg(V )ID]

abs(V )OD cos[arg(V )OD]

abs(V )ID sin[arg(V )ID]

abs(V )OD sin[arg(V )OD]




.

As shown in the previous sections, the first step consists in evaluating first- and
second-order statistics. Numerically we obtain Ex[x] = [−0.0224 − 0.0246 −
0.0611 − 0.0711]T and the estimated covariance matrix:

Cx = 103 ×




0.3587 0.3190 0.1577 0.1524

0.3190 0.2850 0.1405 0.1365

0.1577 0.1405 0.0821 0.0770

0.1524 0.1365 0.0770 0.0754




.

The signal x has thus been first whitened by mean-value removal and by
the eigenvalue-decomposition-based normalization of the covariance matrix,
so that the whitened data have unitary covariance. Also, it is worth analyzing
the temporal correlation of the observed samples: As an example, Figure 9
depicts the auto-correlation function of the signal x3(t). As the signal shows
a non-negligible temporal correlation, the one-unit ICA algorithm is run over
15, 000 samples randomly picked from the set of 81 × 81 = 6561 available
measures, again to simulate stationarity.

The algorithm was run with the parameter-values µ = 5, ∆t = 0.001, η =
−0.5; also, the entries of w(0) ∼ N (0, 1) (and normalized to have unit norm),
while A(0) = 04.

Figure 10 shows the result of a single run: The obtained latent component
clearly pertains to the defect signal, which appears no longer buried by lift-off
noise. The linear superposition of the measured signals which cancels the back-
ground disturbance is non-trivial, as the final neuron weight-vector resulted
to be w = [−0.2093 − 0.0326 0.9094 − 0.3583]T .

22



−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Co
rre

lat
ion

 fu
nc

tio
n

Lags

Fig. 9. Auto-correlation function of signal x3 in the ECT-NDE problem (imaginary
part of ID measure) after mean-value removal.
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Fig. 10. Estimated latent variable in the NDE problem corresponding to the defect
signal (five different views). The picture on the upper-left corner depicts the value
of neuron kinetic energy during the learning phase.

After such ICA-based pre-processing of the available data, the signal-to-noise
(i.e. defect signal to background noise) ratio is good enough to enable an
automatic recognition system to locate and describe the crack, as shown for
instance by the section at x = 0 mm of Figure 10.
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5 Conclusion

A special case of rigid-bodies learning theory was analyzed, which allows a
single neuron to perform the first-principal/independent component analysis
of its inputs. The learning equations, arisen from the study of the dynamics
of a mechanical system, have been proven to generate convergent flows on the
unit hyper-sphere.

Computer-based experiments have been illustrated and discussed in order to
show their numerical behavior, with particular emphasis to image process-
ing and ECT-data processing for non-destructive evaluation. Other poten-
tially interesting applications of the independent analysis technique to elec-
tromagnetic data processing problems have recently been proposed, such as
the enhancement of the synthetic aperture radar (SAR) imagery [23] and the
electromagnetic pollution source analysis for environmental electromagnetic
compatibility monitoring purposes [25].

Further promising electrical-engineering applications of one-unit independent
component analysis, to unsupervised pattern classification and image de-blurring,
are currently under investigation.
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