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Abstract. The present paper deals with a Poisson equation arising in statistical modeling of

semi-deterministic non-linear systems with two independent (input) variables and one dependent

(output) variable. Statistical modeling is formulated in terms of a differential equation that relates

the second-order joint probability density functions of the model’s input/output random variables

with the sought nonlinear model transference. The discussed modeling procedure makes no prior

assumptions on the functional structure of the model, except for monotonicity and continuity with

respect to both input variables. In particular, the method is non-parametric. Results of numerical

tests are presented and discussed in order to get an insight into the behavior of the devised statistical

modeling procedure. The results of numerical tests confirm that the proposed statistical modeling

approach is able to cope with both synthetic and real-world data sets and, in particular, with under-

lying systems and data that exhibit strong hidden nuisance variables and measurement disturbances.

Poisson equation; Statistical modeling; Nonlinear system; Nonparametric modeling; Isotonic mod-

eling.

1. Introduction. Real-world phenomena may rarely be described accurately by

a mathematical model to be evaluated analytically. Statistical modeling provides a

useful tool to build up a model of a phenomenon under observation, on the basis

of the statistical features of the variables describing such phenomenon. Statistical

modeling finds applications in as diverse fields as social and behavioral sciences [2],

biomedical research [8], computer vision and content-based image retrieval [14, 15]

and ecomometrics [20]. As intended here, statistical modeling is based on four main

assumptions: 1) The physical phenomenon under observation relates two indepen-

dent variables with a single dependent variable. Namely, it is assumed that three

variables of interest in a modeling problem are related by y = Φ(x1, x2), where y ∈ Y

represents the dependent variate and (x1, x2) ∈ X1 × X2 ⊂ R
2 represent the inde-

pendent variates. The function Φ : X1 × X2 → Y is semi-deterministic as it includes

nuisance variables that cannot be directly measured. The joint statistical features

of the input/output variates are described by the joint probability density function

py,x1,x2
(y, x1, x2), where, by a slight abuse of notation, the variates have been con-

fused with their realizations. 2) The sought model is monotonically increasing or

decreasing with respect to both input variables (or, equivalently, it is of dose-response

type). The hypothesis of monotonicity in data modeling occurs frequently in applied

fields such as data regression and data mining [18]. 3) Statistical modeling is based

on the estimation of second-order joint probability density functions: It is assumed
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that the number of available observations of the triples (x1, x2, y) is large enough

to get meaningful statistical estimates. 4) The model is non-linear, non-parametric,

namely, there is no assumption on its shape (except for the assumptions of monotonic-

ity and continuity), hence, the devised modeling technique may cope with arbitrary

dependencies, albeit restricted to be monotonic.

Non-parametric modeling is a form of analysis in which the predictor does not

take a predetermined form but is constructed according to information derived from

the data. Nonparametric modeling requires larger data sets than modeling based on

parametric models because the data must supply the model structure as well as the

model estimates.

The isotonic modeling problem is a special case of the general modeling problem

that arises in various fields, such as production planning, inventory control and psy-

chometry [6]. Isotonic modeling occurs whenever it is known that the dependency be-

tween the output variable and the input variables is either monotonically increasing or

monotonically decreasing. Typically, isotonic modeling in a single-input/single-output

setting is formulated as a constrained quadratic programming problem. The notion

of isotonic modeling may be traced back to the seminal contribution [4]. The formu-

lation in terms of least-squares may be generalized to L1 norm [1] and to L∞ norm

(which gives rise to the notion of strict isotonic modeling) [19]. Note that isotonic

modeling is often applied to nonmonotonic data, which justifies the assumption on

the underlying system to be semi-deterministic. An example is given in [12]: Consider

the problem of measuring the viscosity of a fluid at different temperatures. Viscosity

is a nonincreasing function of temperature; however, due to measurement error, the

observed viscosity may not be nonincreasing when ordered by temperature. In this

case, the purpose of isotonic modeling is to replace the observed viscosities with a set

of values that are nonincreasing when ordered by the temperature.

The present research work aims at extending the previous contribution on one-

to-one statistical modeling summarized in the conference paper [10] and explained in

details in the publication [11]. A feature of the present work that is inherited from

the above contribution is that the inferred model is non-parametric. An example of

the importance of non-parametric isotonic modeling is offered in [19]: Researchers are

less willing to impose strong assumptions in their modeling. For instance, applied

researchers may be willing to make the weak assumption that the expected height of

a woman is an increasing function of the height of her father and of her mother, but

be unwilling to make parametric assumptions such as linearity.

Statistical isotonic modeling is about determining a relationship between the two

independent variates (x1, x2) ∈ X1 × X2 and the dependent variate y ∈ Y, described

by the model:

y = f(x1, x2), (1.1)

with f : X1 × X2 → Y denoting a nonlinear deterministic model, by making use
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of pooled information only, summarized by the joint probability distributions of the

variates y, x1, x2. The statistical modeling method proposed in the present paper is

based on known formulas to quantify the distortion of the statistical distribution of

the input values operated by a deterministic monotonic nonlinear system.

Paper organization: The present paper is organized as follows. Section 2 ex-

plains the fundamental principles behind the proposed bivariate isotonic statistical

modeling approach. In particular, it shows that an appropriate choice of a two-

input/two-output non-linear system to probe the sought two-input/one-output model

allows formulating the statistical isotonic modeling problem in terms of conservation

of probability measures in the model’s second-order joint probability space. The re-

sult is a system of partial differential equations having the sought model as unknown.

Section 3 of the present paper moves forward the formulation in terms of a two-

dimensional Poisson equation derived on the basis of a variational principle applied

to a functional least-squares-error formulation. In such section, the problem of setting

up appropriate boundary conditions is also discussed on and the numerical implemen-

tation used to solve the Poisson equation is described briefly. Section 4 summarizes

the quantities used for measuring objectively the features of the devised bivariate

isotonic statistical modeling technique. Section 4 also illustrates and discusses the re-

sults of modeling synthetic data sets as well as real-world data sets, namely, a data set

arising from robotic arm dynamics, a data set arising from a food toxicology research

and a data set from quantitative palynology research. The results of modeling the

synthetic as well as the real-world data sets are encouraging and show that the de-

vised statistical modeling technique can cope with underlying systems and data that

include strong hidden nuisance variables and measurement disturbances. Section 5

concludes the paper.

2. Statistical bivariate isotonic modelling: Fundamental principles. Mono-

tonic dependencies are common in physical systems. For instance, the rates of bio-

geochemical processes can be monotonic functions of factors like temperature and hu-

midity. For such systems, it is of prime importance to infer monotonic relationships

from a given data set by constructing a model that is consistent with monotonicity,

namely, that is isotonic. The majority of the challenging applied isotonic modeling

problems are characterized by very large data sets. An example is offered in [1]: In

the analysis of large-scale microarray data, which is one of the most important tools

in biology, the same procedure is used for studying the fit of tens of thousands of

genes to a given partial order. A further example is offered in [17], which concerns

the classification of large portions of texts extracted from the World Wide Web.

2.1. System-theoretic grounds of the proposed statistical modelingmethod.

Consider a non-linear system with two input variables and two output variables:

(y, z) = ϕ(x1, x2), (2.1)
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where (x1, x2) ∈ X1 × X2 ⊂ R
2, (y, z) ∈ Y × Z ⊂ R

2 and ϕ : X1 ×X2 → Y ×Z. The

non-linear system (2.1) is supposed to be invertible in the domain of interest and its

inverse is denoted by ϕ−1 : Y × Z → X1 ×X2.

Assume that x1, x2 are random variables with joint probability density function

denoted by px1,x2
(x1, x2). Such random variables get transformed into two ran-

dom variables y, z that are distributed according to the probability density function

py,z(y, z). Define the Jacobian of the system ϕ as:

J(x1, x2)
def
=

[

∂y
∂x1

∂y
∂x2

∂z
∂x1

∂z
∂x2

]

. (2.2)

The joint probability density function of the output variates is related to the joint

probability density function of the input variates by the relationship:

py,z(y, z) =
px1,x2

(x1, x2)

| detJ(x1, x2)|

∣

∣

∣

∣

(x1,x2)=ϕ−1(y,z)

, (2.3)

as illustrated in the Figure 2.1. Recall that the function det J has the following plain

form:

detJ(x1, x2) =
∂y

∂x1

∂z

∂x2
−

∂y

∂x2

∂z

∂x1
. (2.4)

b

b ϕ

px1,x2

ϕ−1

py,z
SYSTEM

Fig. 2.1. System-theoretic relationship between the joint probability density function of two

variates x1, x2 and the joint probability density function of two variates (y, z) = ϕ(x1, x2) induced

by a deterministic invertible system ϕ.

Since the non-linear function ϕ is invertible, by hypothesis, in the domain X1×X2,

the matrix-function J(x1, x2) is non-singular in X1×X2 and hence the scalar-function

detJ(x1, x2) is non-zero in X1×X2. The fundamental equation (2.3) may be rewritten

in plain form according to the following two cases:

• Positive Jacobian case: If it holds that detJ(x1, x2) > 0, then the funda-

mental equation (2.3) may be rewritten in plain form as:
(

∂y

∂x1

∂z

∂x2
−

∂y

∂x2

∂z

∂x1

)

(py,z ◦ ϕ)(x1, x2) = px1,x2
(x1, x2). (2.5)

• Negative Jacobian case: If it holds that detJ(x1, x2) < 0, then the fun-

damental equation (2.3) may be rewritten in plain form as:
(

∂y

∂x2

∂z

∂x1
−

∂y

∂x1

∂z

∂x2

)

(py,z ◦ ϕ)(x1, x2) = px1,x2
(x1, x2). (2.6)
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The main idea behind statistical modelling based on the above considerations is

that, whenever the probability density functions px1,x2
and py,z are known and a non-

linear model that links the four variates x1, x2, y, z as in equation (2.1) is sought, the

equation (2.5) and the equation (2.6) provide (differential) constraints to be satisfied

by the model.

In the case of interest in the present paper, the non-linear model (1.1) includes

three variates x1, x2, y. In order to exploit the relationships between four variates,

construct the non-linear system:

ϕ :

{

y = f(x1, x2),

z = ax1 + bx2,
(2.7)

with a, b ∈ R known, which apparently may be regarded as an extension of the non-

linear regression model (1.1) where the variable z may be regarded as an auxiliary

variable.

The det-Jacobian of the extended model (2.7) takes on values:

detJ(x1, x2) = b
∂f

∂x1
− a

∂f

∂x2
. (2.8)

Assume that the model y = f(x1, x2) is such that ∂f
∂x1

> 0 and ∂f
∂x2

> 0. (The

following equations modify in a rather straightforward way if one or both partial

derivatives possess a reverse sign.) Consider the following two cases:

• Case b = 1 and a = 0: With such choice of the constant parameters, the

condition on the Jacobian reads ∂f
∂x1

> 0, the auxiliary variable is such that

z = x2, and thus the equation (2.5) becomes:

∂f(x1, x2)

∂x1
=

px1,x2
(x1, x2)

py,x2
(f(x1, x2), x2)

. (2.9)

• Case b = 0 and a = 1: With such choice of the constant parameters, the

condition on the Jacobian reads − ∂f
∂x2

< 0, the auxiliary variable is such that

z = x1, and thus the equation (2.6) becomes:

∂f(x1, x2)

∂x2
=

px1,x2
(x1, x2)

py,x1
(f(x1, x2), x1)

. (2.10)

The above two conditions must be satisfied at the same time, therefore the non-linear

2-to-1 model f may be inferred by solving the system of two differential equations

(2.9)-(2.10), equipped with suitable boundary conditions. The complete system of

partial differential equations in the case of mixed monotonically increasing/decreasing

behavior with respect to the model’s independent variables reads:







∂f(x1,x2)
∂x1

= ±
px1,x2

(x1,x2)

py,x2
(f(x1,x2),x2)

,
∂f(x1,x2)

∂x2

= ±
px1,x2

(x1,x2)

py,x1
(f(x1,x2),x1)

.
(2.11)
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2.2. Discussion on the proposed technique and comparison with exist-

ing methods. The present statistical modeling method by a 2-to-1 non-linear model

extends the 1-to-1 statistical modeling technique discussed in details in the previous

contribution [11]. The previous method does not require the input/output variables

to be necessarily paired and it allows estimating a model in presence of missing values

in both variables’ records. Such benefits are lost in the present formulation because

pairing is necessary to estimate the joint probability density functions px1,x2
, py,x1

,

py,x2
.

The proposed method relies on the fundamental relationship (2.3), which holds

only is the system transfer function ϕ is monotonically increasing (or decreasing) with

respect to both input variables. If such assumption does not hold, the relationship

between the joint probability density function of the input variables and the joint

probability density function of the output variables does not allow recovering the

non-linear model ϕ univocally.

Although extensions of the proposed statistical modeling method to more than

four variables is possible, in principle, there exists a practical obstruction given by

the intrinsic difficulty related with the estimation of the joint probability density

functions of several variables. As long as histogram-based estimation is invoked (as is

the case in the present contribution), an accurate estimate requires volumes of data

that are hardly available, in practice. It appears clear that an extension to more

than four variables would require a companion method for the estimation of joint

probability density function that is non-parametric, computationally simple and that

provides a sufficiently accurate estimate with the volume of data available in common

applications.

The proposed statistical modeling technique exhibits peculiar features that dis-

tinguish it from existing modeling methods and algorithms.

An important feature of the proposed statistical modeling method is the absence

of any assumption on the shape and on the functional structure of the model f (except

for monotonicity and continuity). It is interesting to compare such feature with the

ones of a well-known modeling technique based on artificial neural networks. Several

neural network-based models are similar to well-known statistical techniques such as

generalized linear models, polynomial models and projection pursuit models, while

some neural network models, such as self-organizing maps, have no precise statisti-

cal equivalents. All the mentioned methods, however, require some assumptions on

the model, such as number of hidden layers, structure of the artificial neurons and

structure of the learning rule, which affect severely the result.

Likewise, the flexibility exhibited by the proposed modeling method compares

favorably with the parametric method that consists in choosing a model from a catalog

of predefined models, or as a combination of a set of models extracted from a dictionary

of predefined models, on the basis of a fitting criterion. It should be noted, on the other

hand, that fitting a predefined model does not rely on the assumption of monotonicity.

6



The low computational complexity of the proposed modeling technique is likewise

a prominent feature. Once the joint second-order probability density functions of the

data are estimated, the computational burden of the modeling technique depends

essentially on the desired accuracy of the model: In fact, the computational bur-

den essentially depends on the number of subdivisions of the domain of the x1, x2, y

variables. Although the model is nonlinear, the mathematical operations that are nec-

essary to construct the model are essentially sums and multiplications of real-valued

numbers and the histogram-based approximation of the joint probability density func-

tions of two variables are represented by two-dimensional tables, whose entries are

essentially counters that get increased once a sample hits the corresponding ‘bin’ [11].

A further prominent feature of the devised method is robustness against measure-

ment errors on the values of the involved independent/dependent variables. In fact,

the devised modeling method does not treat explicitly the triples (x1, x2, y), as the

devised modeling method method relies on the joint statistical features inferred by

pooling the data in pairwise records (x1, x2), (y, x1) and (y, x2). Each joint second-

order probability density function is estimated by subdividing the rectangles X1×X2,

Y × X1 and Y × X2 in small rectangles and by counting how many pairs (x1, x2),

(y, x1) and (y, x2) fall in each subdivision. If a pair is affected by measurement noise,

for example, the actual pair (x1, x2) is measured as (x1+ν1, x2+ν2), where ν1 and ν2

represent measurement errors, a modeling algorithm that insists directly on the data

will be directly affected by the measurements errors, while the proposed method is

unaffected, provided that the errors ν1 and ν2 are sufficiently small (or the extent of

the subdivisions in the histogram-based probability density function estimation algo-

rithm is sufficiently large) so that the pair (x1 + ν1, x2 + ν2) will fall in the same bin

as the actual pair (x1, x2).

3. Formulation in terms of a two-dimensional Poisson equation and

numerical details. The system of partial differential equations (2.11) is an instance

of the structured differential system:







∂y
∂x1

= F1(y, x1, x2)
def
= ±

px1,x2
(x1,x2)

py,x2
(y,x2)

,

∂y
∂x2

= F2(y, x1, x2)
def
= ±

px1,x2
(x1,x2)

py,x1
(y,x1)

.
(3.1)

In what follows, it is assumed that the sets X1,X2,Y are bounded intervals.

3.1. Reformulation as a Poisson equation. A system of two first-order dif-

ferential equations in one unknown may be reduced to a single second-order differential

equation as follows. The problem represented by the differential system (3.1) may be

reformulated as a functional least-squares problem by the help of the error functional:

E(y)
def
=

1

2

∫

X1×X2

[

(

∂y

∂x1
− F1(y, x1, x2)

)2

+

(

∂y

∂x2
− F2(y, x1, x2)

)2
]

dx1 dx2.

(3.2)
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Any solution y : X1 × X2 → R of the differential system (3.1) is also a minimizer of

the error functional E. By the calculus of variation, it is known that a minimizer y⋆

of the error functional E satisfies the equation:

dE(y⋆ + εη)

dε

∣

∣

∣

∣

ε=0

= 0, (3.3)

for every perturbation η : X1 × X2 → R such that η(x1, x2) = 0 for all (x1, x2) ∈

∂(X1 ×X2) (namely, for every perturbation that vanishes to zero at the boundary of

the domain X1 ×X2). From the definition of the error functional E, it follows that:

E(y) =
1

2

∫

X1×X2

[

(

∂y

∂x1

)2

+

(

∂y

∂x2

)2

− 2
∂y

∂x1
F1 − 2

∂y

∂x2
F2 + F 2

1 + F 2
2

]

dx1 dx2.

(3.4)

Note that:

F1(y + εη, x1, x2) = F1(y, x1, x2) + εη
∂F1

∂y
(y, x1, x2) + o(ε),

F2(y + εη, x1, x2) = F2(y, x1, x2) + εη
∂F2

∂y
(y, x1, x2) + o(ε),

where limε→0 o(ε)/ε = 0. Then, the variational principle (3.3) leads to the equation:

lim
ε→0

E(y + εη)− E(y)

ε
=

∫

X1×X2

(

∂y

∂x1

∂η

∂x1
+

∂y

∂x2

∂η

∂x2
−

∂η

∂x1
F1 −

∂y

∂x1

∂F1

∂y
η

−
∂η

∂x2
F2 −

∂y

∂x2

∂F2

∂y
η +

∂F1

∂y
F1η +

∂F2

∂y
F2η

)

dx1 dx2 = 0, (3.5)

in the unknown y : X1 × X2 → R. By invoking the integration-by-parts method, one

gets:
∫

X1×X2

∂y

∂x1

∂η

∂x1
dx1 dx2 =

∫

X2

∂y

∂x1
η

∣

∣

∣

∣

∂X1

dx2 −

∫

X1×X2

∂2y

∂x2
1

η dx1 dx2, (3.6)

∫

X1×X2

∂y

∂x2

∂η

∂x2
dx1 dx2 =

∫

X1

∂y

∂x2
η

∣

∣

∣

∣

∂X2

dx1 −

∫

X1×X2

∂2y

∂x2
2

η dx1 dx2, (3.7)

∫

X1×X2

∂η

∂x1
F1 dx1 dx2 =

∫

X2

F1η|∂X1
dx2

−

∫

X1×X2

(

∂F1

∂y

∂y

∂x1
+

∂F1

∂x1

)

η dx1 dx2, (3.8)

∫

X1×X2

∂η

∂x2
F2 dx1 dx2 =

∫

X1

F2η|∂X2
dx1

−

∫

X1×X2

(

∂F2

∂y

∂y

∂x2
+

∂F2

∂x2

)

η dx1 dx2. (3.9)

As the perturbation function η vanishes on the border ∂(X1 × X2), the first term on

the right-hand side of the equations (3.6), (3.7), (3.8) and (3.9) is zero. Therefore,

the equation (3.5) simplifies to:
∫

X1×X2

[

−
∂2y

∂x2
1

−
∂2y

∂x2
2

+
∂F1

∂x1
+

∂F2

∂x2
+

1

2

∂

∂y
(F 2

1 + F 2
2 )

]

η dx1 dx2 = 0. (3.10)
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The perturbation η is arbitrary, hence the above equation leads to the second-order

partial differential equation

∂2y

∂x2
1

+
∂2y

∂x2
2

=
∂F1

∂x1
+

∂F2

∂x2
+

1

2

∂

∂y
(F 2

1 + F 2
2 ). (3.11)

Defining the function G = G(y, x1, x2) as

G(y, x1, x2)
def
=

∂F1

∂x1
+

∂F2

∂x2
+

1

2

∂

∂y
(F 2

1 + F 2
2 ), (3.12)

and introducing the Laplace operator ∇2 (in rectangular coordinates), the equation

(3.11) takes on the form

∇2y = G, (3.13)

which is a Poisson equation. Poisson’s equation is a partial differential equation of

elliptic type with broad applications in electrostatics, in mechanical engineering and

biology (e.g., to model the motion of biological organisms in a solution), in theoretical

physics (e.g., in the study of gravitation), in applied physics (e.g., in the study of n-p

junctions in semiconductor devices) [9] as well as, e.g., in computer graphics [13].

A Poisson equation is typically defined on a two-dimensional or a three-dimensional

domain, although it may be formulated on high-dimensional manifolds. A Poisson

equation may be solved using a Green’s function [5, 16], but there are various known

methods to approach a Poisson equation numerically.

In the present context, the non-linear function G : Y ×X1×X2 → R takes on the

form:

G =
1

py,x2

∂px1,x2

∂x1
+

1

py,x1

∂px1,x2

∂x2
−

p2x1,x2

p3y,x2

∂py,x2

∂y
−

p2x1,x2

p3y,x1

∂py,x1

∂y
. (3.14)

The function G is defined in the set D ⊂ Y × X1 ×X2 given by:

D
def
= {(y, x1, x2) ∈ Y × X1 ×X2 | py,x1

(y, x1) 6= 0, py,x2
(y, x2) 6= 0}. (3.15)

To be evaluated, it needs the computation of the first-order partial derivatives
∂px1,x2

∂x1

,
∂px1,x2

∂x2

,
∂py,x2

∂y
and

∂py,x1

∂y
. It might be also noted that, by defining:

Px1,x2

def
= log px1,x2

, Py,x1

def
= log py,x1

, Py,x2

def
= log py,x2

, (3.16)

on the set D, the function G may be rewritten as:

G = e(Px1,x2
−Py,x2

) ∂Px1,x2

∂x1
+ e(Px1,x2

−Py,x1
) ∂Px1,x2

∂x2

−e2(Px1,x2
−Py,x2

) ∂Py,x2

∂y
− e2(Px1,x2

−Py,x1
) ∂Py,x1

∂y
. (3.17)

A special set of boundary conditions is devised as follows. Assume again monotonically-

increasing dependency and define y
def
= min{Y}, x1

def
= min{X1} and x2

def
= min{X2}.
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As the function y = y(x1, x2) is monotonically increasing with respect to both vari-

ables, the identity f(x1, x2) = y holds. Usable boundary conditions are:






























y(x1, x2) = y,
∂y
∂x1

(x1, x2) = F1(y(x1, x2), x1, x2), x1 ∈ X1,
∂y
∂x1

(x1, x2) = F1(y(x1, x2), x1, x2), x1 ∈ X1,
∂y
∂x2

(x1, x2) = F2(y(x1, x2), x1, x2), x2 ∈ X2,
∂y
∂x2

(x1, x2) = F2(y(x1, x2), x1, x2), x2 ∈ X2,

(3.18)

where x1
def
= max{X1} and x2

def
= max{X2}. Such boundary conditions prescribe the

values at the bottom-left corner of the domain and on the four borders of the domain.

Another special boundary condition, that retraces the center-of-mass-to-center-

of-mass-mapping condition utilized in [10] is as follows. Define:














xm
1

def
=

∫

X1×X2

px1,x2
(x1, x2)x1 dx1 dx2,

xm
2

def
=

∫

X1×X2

px1,x2
(x1, x2)x2 dx1 dx2,

ym
def
=

∫

Y
py(y)y dy.

(3.19)

A center-of-mass-to-center-of-mass-mapping condition casts as follows:










y(xm
1 , x

m
2 ) = ym,

∂y
∂x1

(x1, x
m
2 ) = F1(y(x1, x

m
2 ), x1, x

m
2 ), x1 ∈ X1,

∂y
∂x2

(xm
1 , x2) = F2(y(x

m
1 , x2), x

m
1 , x2), x2 ∈ X2,

(3.20)

Such boundary conditions prescribe the values on a ‘cross’ in the middle of the domain.

3.2. Numerical implementation. The statistical modeling problem is solved

by implementing a numerical scheme based on a discretization of the Poisson equation

(3.11). Denote the set X1 = [x1, x1] and the set X2 = [x2, x2]. The interval X1 is

subdivided into B1 sub-intervals of equal width h1
def
= (x1 − x1)/B1 and the interval

X2 is subdivided into B2 sub-intervals of equal width h2
def
= (x2 − x2)/B2. The

solution y = f(x1, x2) is represented by the (B2 + 1) × (B1 + 1) matrix y of entries

yi,j , with i = 1, . . . , B2 + 1 and j = 1, . . . , B1 + 1. (Note that the index i represents

the rows, hence is associated with the variable x2, while the index j represents the

columns, hence it is associated with the variable x1.) The quantity yi,j represents

an approximation of the true value y(x1 + (j − 1)h1, x2 + (i − 1)h2). A fixed-point

iterative scheme generates a sequence y(k), with k = 0, 1, 2, . . . of increasingly-refined

approximations of the true solution to the Poisson equation, where it is understood

that the matrix y(0) denotes a suitably-chosen initial guess.

It is assumed that the boundary conditions (3.18) hold. In order to approximate

the second-order partial derivatives involved in the non-linear Poisson equation, the

following central difference approximation scheme is made use of:

∂2y

∂x2
1

(x1 + (j − 1)h1, x2 + (i− 1)h2) ≈
yi,j+1 − 2yi,j + yi,j−1

h2
1

, (3.21)

∂2y

∂x2
2

(x1 + (j − 1)h1, x2 + (i− 1)h2) ≈
yi+1,j − 2yi,j + yi−1,j

h2
2

, (3.22)
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that holds in the central part of the subdivision grid, namely, for i = 2, . . . , B2 and

j = 2, . . . , B1. It is also convenient to define the matrix of functional components

Gi,j : Y → R defined by:

Gi,j(y)
def
= G(y, x1 + (j − 1)h1, x2 + (i − 1)h2). (3.23)

Placing the above approximations into the Poisson equation (3.11) yields the five-point

scheme:

2

(

1

h2
1

+
1

h2
1

)

yi,j +Gi,j(yi,j) =
1

h2
1

(yi,j+1 + yi,j−1) +
1

h2
1

(yi+1,j + yi−1,j), (3.24)

which again holds in a non-peripheral point of the grid, as illustrated in the Figure 3.1.

b

b

b

bb

yi,j

yi+1,j

yi−1,j

yi,j−1 yi,j+1

Fig. 3.1. Five-points numerical scheme for integrating the Poisson equation.

(Similar equations might be written to implement the boundary conditions and

are omitted from here.) The equations (3.24) constitute a set of non-linear equa-

tions in the unknown yi,j . It is convenient to write such a non-linear system by the

conventional representation:

y + L(y) = N(y), (3.25)

where the matrix y represents the whole set of unknowns, the symbol L represents

a linear operator and the symbol N represents a non-linear operator. A fixed-point

iterative scheme generates a sequence y(k), with k = 0, 1, 2, . . . of increasingly-refined

approximations of the true solution to the Poisson equation, computed by the recur-

rence rule:

y(k+1) = −L(y(k)) +N(y(k)), (3.26)

where it is understood that the quantity y(0) denotes a suitably-chosen initial guess.

A pseudocode to implement a possible instance of the above numerical scheme

is reported in the Algorithm 1. Note that the top-right corner’s value is computed
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as the average of the value obtained by integrating the upper-side boundary ordinary

differential equation and of the value obtained by integrating the right-hand-side

boundary ordinary differential equation. (The purpose of the pseudo-code explained

Algorithm 1 Pseudocode to implement the numerical solution of the differential

system (3.1) of partial differential equations reformulated as the Poisson equation

(3.11) with boundary conditions (3.18).

✄ Input domain boundaries x1, x1, x2, x2, numbers of subdivisions B1, B2, functions

F1, F2, G and boundary value y

Compute widths h1 =
x1−x

1

B1

and h2 =
x2−x

2

B2

Define constant γ = 2
(

1
h2

1

+ 1
h2

2

)

Set y
(0)
1,1 = y

for i = 2 to B2 + 1 do

Compute y
(0)
i,1 = y

(0)
i−1,1 + h2F2(y

(0)
i−1,1, x1, x2 + (i− 1)h2) [Left-hand border ]

end for

for j = 2 to B1 + 1 do

Compute y
(0)
1,j = y

(0)
1,j−1 + h1F1(y

(0)
1,j−1, x1 + (j − 1)h1, x2) [Lower-side border ]

end for

for i = 2 to B2 do

Compute y
(0)
i,B1+1 = y

(0)
i−1,B1+1 + h2F2(y

(0)
i−1,B1+1, x1, x2 + (i − 1)h2) [Right-hand border

excluded the top-right corner ]

end for

for j = 2 to B1 do

Compute y
(0)
B2+1,j = y

(0)
B2+1,j−1 + h1F1(y

(0)
B2+1,j−1, x1 + (j − 1)h1, x2) [Upper-side border

excluded the top-right corner ]

end for

Set ya
B2+1,B1+1 = y

(0)
B2+1,B1

+ h1F1(y
(0)
B2+1,B1

, x1 +B1h1, x2)

Set yb
B2+1,B1+1 = y

(0)
B2,B1+1 + h2F2(y

(0)
B2,B1+1, x1, x2 +B2h2)

Set y
(0)
B2+1,B1+1 = 1

2

(

ya
B2+1,B1+1 + yb

B2+1,B1+1

)

[Top-right corner ]

Set y
(0)
i,j = y for every i = 1, . . . , B2 and j = 1, . . . , B1 [Initial guess]

for k = 0, 1, 2, . . . do

for i = 2 to B2 do

for j = 2 to B1 do

Compute y
(k+1)
i,j = (y

(k)
i+1,j + y

(k)
i−1,j)/(γh

2
2) + (y

(k)
i,j+1 + y

(k)
i,j−1)/(γh

2
1) − Gi,j(y

(k)
i,j )/γ

[Central part of the grid ]

end for

end for

end for

✄ Output results yi,j

in the present section is to illustrate and clarify the basic notions behind the imple-

mentation of the discussed numerical procedures. More refined and better optimized

versions could be implemented, indeed.)

The second-order joint probability density functions px1,x2
, py,x1

and py,x2
are
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estimated by a histogram method and log-warped to obtain the functions Px1,x2
,

Py,x1
and Py,x2

defined in the equations (3.16). The functions F1 and F2 are thus

evaluated numerically and the function G is evaluated by the equation (3.17) upon

numerically approximating the required first-order partial derivatives.

4. Numerical tests. In the numerical tests, the average relative error at itera-

tion k refers to the quantity

‖y(k+1) − y(k)‖F
(B1 + 1)(B2 + 1)

, (4.1)

while the average absolute error refers to the quantity

‖(y(k+1) − y⋆)⊘ y⋆‖F
(B1 + 1)(B2 + 1)

, (4.2)

where y⋆ denotes the matrix of values corresponding to the actual solution f (which is

known only in those tests about synthetic data sets), symbol ⊘ denotes component-

wise division and symbol ‖ · ‖F denotes Frobenius norm. Likewise, the point-wise

absolute error refers to the quantities

∣

∣

∣

∣

∣

y
(k+1)
i,j − y⋆i,j

y⋆i,j

∣

∣

∣

∣

∣

, (4.3)

evaluated for each pair of index (i, j) separately.

4.1. Tests on isotonic statistical modeling: Synthetic data. The pairs

(x1, x2) of independent variates are generated uniformly in X1 ×X2 and the variate y

is generated by the rule y = f(x1, x2) + ν, with ν being a zero-mean Gaussian noise.

A total of 3, 000 samples were generated for the numerical simulations. Two tests

are conducted, where the underlying non-linear model is described by the non-linear

functions specified in the following test problems:

• Test problem 1: The problem is defined by the functions F1(y, x1, x2) =

y− 2x1 −x2 +1 and F2(y, x1, x2) = y− 2x1 −x2, by the intervals X1 = [0, 1]

and X1 = [0, 2] and by the boundary condition f(0, 0) = 1. Such features

give the function G(y, x1, x2) = 2(y − 2x1 − x2 − 1) and the exact solution

f(x1, x2) = 2x1 + x2 + 1.

• Test problem 2: The problem is defined by the functions F1(y, x1, x2) =

4x1e
−y and F2(y, x1, x2) = e−y, by the intervals X1 = [0, 1] and X1 = [0, 2]

and by the boundary condition f(0, 0) = 0. Such features give the function

G(y, x1, x2) = 4e−y − (16x2
1 + 1)e−2y and the exact solution f(x1, x2) =

log(2x2
1 + x2 + 1).

The variance of the noise ν was set to 10−4. The boundary conditions were chosen as

in (3.20) and B1 = 50 and B2 = 60. Note that the errors (4.1), (4.2) and (4.3) refer

to the actual value of the model, hence they take into account the measurement noise

ν too.
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The Figure 4.1 illustrates the numerical behavior on the Test problem 1, in terms

of absolute error and of estimated model superimposed with the actual model and

with the (noisy) data-points on two central sections.
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Fig. 4.1. Test problem 1. (a) Left-hand panel: Estimated solution superimposed with the actual

solution (lighter colors surface). Right-hand panel: Point-wise absolute error (in logarithmic scale).

(b) Estimated model superimposed with the actual model and with the data-points on the section

x1 = x
m
1 (left-hand panel) and on the section x2 = x

m
2 (right-hand panel).
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The Figure 4.2 illustrates the numerical behavior on the Test problem 2, in terms

of absolute error and of estimated model superimposed with the actual model and

with the (noisy) data-points on two central sections.
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Fig. 4.2. Test problem 2. (a) Left-hand panel: Estimated solution superimposed with the actual

solution (lighter colors surface). Right-hand panel: Point-wise absolute error (in logarithmic scale).

(b) Estimated model superimposed with the actual model and with the data-points on the section

x1 = x
m
1 (left-hand panel) and on the section x2 = x

m
2 (right-hand panel).

In the considered experiments, the statistical modeling technique returns the ex-

pected results. The accuracy of model estimation is better at the center of the domain,
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due to the chosen boundary conditions, and are worst at the peripheral parts of the

domain, due to numerical errors that occur in the estimation of probability density

functions by finite-size data-sets, to numerical errors that occur in the estimation of

the first-order derivatives of the non-linear functions and to numerical approximations.

4.2. Tests on isotonic statistical modeling: Robotic arm dynamics data.

The data used in the present experiment come from a realistic simulation of the

dynamics of a Puma 560 robot arm [3]. The data set contains 8 independent variables

and 1 dependent variable. The relationship between the variables is known to be

nonlinear and the system output measurement to be quite noisy (data set available

on the LIACC Repository1). The original 8 independent variables were projected over

the subspace spanned by the 2 minor components. Both the obtained variables x1 and

x2 show negative correlation with the dependent variable y (namely, the coefficient

of correlation between the variables x1 and y is −0.5173, while the coefficient of

correlation between the variables x2 and y is −0.1548), which suggests a dependence

of decreasing type from both inputs.

The Figure 4.3 illustrates the histogram-based estimates of the second-order joint

probability density functions on the Puma 560 robot arm.
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Fig. 4.3. Puma 560 robot arm data set. Histogram-based estimates of the second-order joint

probability density functions. Left-hand panel: Estimate of px1,x2
. Central panel: Estimate of py,x1

.

Right-hand panel: Estimate of py,x2
.

1http://www.liaad.up.pt/ ltorgo/Regression/DataSets.html
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The Figure 4.4 shows the accuracy of the achieved model in terms of estimated

model superimposed with the data-points on two sections and in terms of relative

average error during iteration. The partitions cardinality are B1 = 50 and B2 = 60.
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Fig. 4.4. Puma 560 robot arm data set. (a) Left-hand panel: Estimated model superimposed

with the data-points on the section x1 = x
m
1 . Right-hand panel: Estimated model superimposed with

the data-points on the section x2 = x
m
2 . (b) Relative average error during iteration.
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The purpose of the present experiment was to illustrate the behavior of the devised

statistical nonlinear modeling procedure in presence of a monotonically decreasing

relationship between the dependent variable and both independent variables. The

data set looks noisy, as expected, and the obtained numerical results evidence that

the estimated model is able to capture the mean dependence of the data, as the

displayed model sections locate amidst the densest samples area of the parameter

space.

4.3. Tests on isotonic statistical modeling: Acrylamide concentration

data. The present experiment is about applying the devised statistical modeling pro-

cedure to the problem discussed in the contribution [7], which concerns the formation

of acrylamide during the process of cooking French fries.

Acrylamide is a chemical compound with chemical formula C3H5NO. Human

exposure to acrylamide through consumption of French fries and other foods has

been recognized as a potential health concern. Documented studies have found that

increased dietary intake of acrylamide is associated with increased risks of post-

menopausal endometrial and ovarian cancer, particularly among nonsmokers. Con-

sumption of French fries during preschool years is associated with a slightly increased

risk of breast cancer later in life. Dietary acrylamide is also significantly associated

with increased risk of oral cavity cancer in female nonsmokers. Acrylamide forma-

tion can be greatly influenced by food processing conditions. In particular, frying

time and temperature are the most important key parameters influencing acrylamide

formation.

In the Acrylamide data set, the predictor variable x1 denotes the cooking temper-

ature expressed in ◦C, the predictor variable x2 denotes the cooking time in seconds,

while the target variable y denotes the concentration of acrylamide, expressed in

µg/kg. Both variables x1 and x2 show positive correlation with the dependent vari-

able y (namely, the coefficient of correlation between the variable x1 and the variable

y is 0.6124, while the coefficient of correlation between the variable x2 and the variable

y is 0.5271). Such observation suggests to assume a dependence of increasing type

with respect to both independent variables.

The Figure 4.5 shows the accuracy of the achieved model in terms of estimated

model superimposed with the data-points on two sections. The partitions cardinality

are B1 = 50 and B2 = 60. The model looks accurate, except at the border of the

domain.

4.4. Tests on isotonic statistical modeling: Pollen grains data. The

Pollen grains data set consists of four independent variables (three geometrical fea-

tures of grains, namely ‘ridge’, ‘nub’ and ‘crack’, plus pollen grain weight) and the

dependent variable to be predicted by the model is grain density. Such data set is

available on the StatLib Repository2.

2http://lib.stat.cmu.edu/datasets/
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Fig. 4.5. Numerical behavior of the statistical modeling technique on the Acrylamide data

set. Left-hand panel: Estimated model superimposed with the data-points on the section x1 = x
m
1 .

Right-hand panel: Estimated model superimposed with the the data-points on the section x2 = x
m
2 .

The purpose of the present experiment is to show the behavior of the devised

statistical nonlinear modeling procedure in presence of mixed-monotonicity type de-

pendency between the dependent variable and the two independent variables. To this

aim, the original 4 independent variables are projected over the subspace spanned by

the 2 minor components. The obtained variables x1 and x2 show mixed-sign correla-

tion with the independent variable y (namely, the coefficient of correlation between

the variable x1 and the variable y is 0.6407, while the coefficient of correlation between

the variable x2 and the variable y is −0.4874). Hence, mixed increasing/decreasing

monotonic dependency is selected in the statistical isotonic modeling procedure.

The Figure 4.6 illustrates the histogram-based estimates of the second-order joint

probability density functions. The Figure 4.7 shows the accuracy of the achieved

model in terms of estimated model superimposed with the data-points on two sections.

The partitions cardinality are B1 = 50 and B2 = 60.

Even in this experiment, the data set looks noisy and the inferred model is able to

capture the mean dependence of the data, as it locates amid the densest portion of the

parameter space. Noteworthy, the devised modeling procedure is able to effectively

cope with mixed increasing/decreasing dependence of the independent variable with

respect to the dependent variables.

5. Conclusions. The research endeavor illustrated in the present article took

its moves from the following assumptions:
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Fig. 4.6. Pollen grains data set. Histogram-based estimates of the second-order joint probability

density functions. Left-hand panel: Estimate of px1,x2
. Central panel: Estimate of py,x1

. Right-

hand panel: Estimate of py,x2
.
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Fig. 4.7. Numerical behavior of the statistical modeling technique on the Pollen grains data

set. Left-hand panel: Estimated model superimposed with the data-points on the section x1 = x
m
1 .

Right-hand panel: Estimated model superimposed with the the data-points on the section x2 = x
m
2 .

• A statistical model describes how one random variable is related to one or

more random variables. In particular, it was assumed that the physical phe-

nomenon under observation relates two independent variables with a single de-
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pendent variable. The joint statistical features of the independent/dependent

variates are described by their second-order joint probability density func-

tions.

• The statistical model is non-parametric, namely, there is no assumption on

its shape (except that the model be monotonically increasing or decreasing

and continuous).

The statistical modeling problem was formulated in terms of a system of first-order

non-linear partial differential equations that relate the second-order joint probability

density functions of the independent/dependent variates with the unknown model by

a probability measure conservation principle. Such a system of partial differential

equations was reduced to a single second-order non-linear differential equation of

Poisson type.

In order to implement the devised statistical modeling method, a finite-difference

numerical scheme of relaxation type was proposed and tested numerically. The nu-

merical results illustrated the numerical features of the devised statistical isotonic

modeling method. In particular, the devised method was tested on modeling syn-

thetic data sets as well as real-world data sets, namely, a data set arising from robotic

arm dynamics study, a data set arising from a food toxicology research and a data

set from palynology research. The results of modeling suggest that the devised sta-

tistical modeling technique can cope with models that include strong hidden nuisance

variables.
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