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Abstract The present research work outlines the main ideas behind statistical
regression by a 2-independent-variates and 1-dependent-variate model based
on the invariance of measures in probabilistic spaces. The principle of proba-
bilistic measure invariance, applied under the assumption that the model be
isotonic, leads to a system of differential equations. Such differential system is
reformulated in terms of an integral equation that affords an iterative numer-
ical solution. Numerical tests performed on the devised statistical regression
procedure illustrate its features.
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1 Introduction

Regression is a data mining technique that predicts a target value such as
profit, sales, house values or temperature on the basis of designated predic-
tors. For example, a regression model could be used to predict the value of a
house (target) based on location, number of rooms and lot size (predictors).
A regression task begins with a data set in which the target values as well as
the predictors values are known. For example, a regression model that pre-
dicts house values could be developed on the basis of observed data for a large
number of properties over a sufficiently large period of time. A regression al-
gorithm estimates the value of the target as a function of the predictors for
each case in the data set. These relationships between predictors and target
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are summarized in a model, which can then be applied to a different data set
in which the target values are unknown. Regression has several applications
in trend analysis, business planning, marketing, financial forecasting, drug re-
sponse prediction as well as environmental modeling. Multivariate nonlinear
regression refers to nonlinear regression with two or more predictors.

Statistical multivariate regression provides a useful tool to build up a model
of a phenomenon under observation. The qualification statistical refers to the
distinguishing feature of such class of regression methods that do not make
direct use of the data set to infer a model underlying the data but that makes
use of their statistical features. Statistical regression is applied in a variety
of research fields, such as integrated electronics [1,16], environmental research
[14,18], fluids transport [28], atmospheric research [15], artificial intelligence
[17], geotechnical engineering [30], toxicology research [5], biomass engineering
[19], analysis of food quality [8], analysis of water quality in lakes [25], chemical
engineering [23] as well as demography [2]. The largest part of available statis-
tical regression techniques concerns bivariate regression, although multivariate
statistical regression is of great interest in applications (see, e.g., [5,21]). In
the present context, the statistical features are summarized by the joint prob-
ability density functions of the target and of the predictors. As intended here,
isotonic trivariate statistical regression is based on two main assumptions:

– The physical phenomenon under observation relates a set of independent
variables with a single dependent variable. Among the independent vari-
ables, only two of them play a prominent role in the description of the
phenomenon under observation, while the remaining independent variables
are regarded as nuisance parameters. Such assumption explains the quali-
fication trivariate.

– The statistical regression model is monotonically increasing or decreasing
(or, equivalently, it is of dose-response type). The hypothesis of mono-
tonicity in data modeling occurs frequently in applied fields such as data
regression and data mining [26] and explains the qualification isotonic. Iso-
tonic statistical regression is also referred to, in the scientific literature, as
regression under order restrictions [3,22].

The present section explains the statistical regression problem in an analytic
fashion. It is assumed that n + 3 variates of interest in a regression problem
are related by the functional relationship:

y = Φ(x1, x2, ν1, . . . , νn), (1)

where y ∈ Y represents the dependent variate or target, (x1, x2) ∈ X1×X2 ⊂ R
2

represent the dominant independent variates or predictors and (ν1, . . . , νn) ∈
N ⊂ R

n represent the nuisance variates, according to a physical phenomenon
described by the function Φ. The nuisance variates may account for mea-
surement errors of the variables y, x1, x2. The joint statistical features of the
target and of the predictors are described by the joint probability density func-
tion py,x1,x2,ν1,...,νn(y, x1, x2, ν1, . . . , νn), where, by a slight abuse of notation,
the variates have been confused with their realizations. The marginal joint
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probability density function of the dependent variate and of the dominant
independent variates is described by:

py,x1,x2
(y, x1, x2)

def
=

∫

N

py,x1,x2,ν1,...,νn(y, x1, x2, ν1, . . . , νn) dν1 · · · dνn. (2)

Then, the other required marginal probability density functions may be ob-
tained by integrating with respect to the variables y, x1, x2.

The discrimination between the dominant variates and the nuisance vari-
ates may be effected on the basis of a correlation analysis between each predic-
tors and the target and by selecting the two predictors that show a significantly
larger correlation with the target compared to the remaining predictors.

Trivariate isotonic statistical regression is about determining a model of the
relationship between the two dominant independent variates (x1, x2) ∈ X1×X2

and the dependent variate y ∈ Y, described by a function f : X1×X2 → Y, on
the basis of a probabilistic measure invariance principle. The condition that
the model be isotonic is formalized by:

∂f

∂x1
6= 0 and

∂f

∂x2
6= 0, ∀(x1, x2) ∈ X1 ×X2. (3)

Except for the condition that the model be isotonic, the shape of the model f is
unrestricted. The present research extends the previous work on bivariate iso-
tonic regression [12,13] and was deemed necessary as the connection between
the two problems and methods is nontrivial. It is important to underline that
the present approach, unlike different approaches known from the scientific
literature (see, e.g., [9], for a general approach and [29] for a recent discussion
on advantages/disadvantages of optimization-based approaches), does not rely
on a formulation based on optimization but it is based uniquely on the prin-
ciple of probabilistic measure invariance of statistics. In the case of nonlinear
regression, optimization methods have been used to determine the parame-
ters which best fit the data, by minimizing, in the most common cases, a
least squares expression. As a matter of fact, in general, there is no closed-
form expression for the best-fitting parameters, therefore, usually numerical
optimization algorithms are applied to determine the best values of the param-
eters. There may be many local minima of the function to be optimized and
even the global minimum may produce a biased estimate. According to the
survey [27], it is unlikely that the optimal parameters which minimize some
least squares formulation are the only reasonable parameters, because there
are several sources of uncertainty that can contribute to difficulty in identi-
fying optimal parameter values in nonlinear problems. In fact, the data may
be affected by significant uncertainties (such as missing values, measurement
errors and systematic biases), the nonlinear inverse problems may involve dis-
continuities which result in multiple values for the optimal parameters due to
complexities in the underlying physics, and the model form can also influence
the parameter settings. The statistical regression method suggested within
the present contribution stems from a different starting point. In fact, it is not
based on any parametric model and does not rely on the raw data, but it is



4 Simone Fiori

based on an unrestricted model (which can take any possible shape, except for
the fundamental requirement of monotonicity with respect to the descriptors)
and on cumulative joint statistical features of the data.

The present manuscript is organized as follows. Section 2 of the present
paper discusses the formalization of the statistical regression problem at hand
on the basis of a probabilistic measure invariance principle. Section 3 pro-
poses a reformulation of the differential constraints on the model arising from
the probabilistic invariance principle as an integral equation and some pos-
sible boundary conditions to complete the formulation. Section 4 discusses
the numerical implementation of the iterative procedure to solve such integral
equation and illustrates the behavior of the devised numerical implementation
by numerical tests. Section 5 discusses in details the implementation of the
regression method and illustrates its numerical features either on synthetic
and real-world data sets. Section 6 concludes the paper.

2 Isotonic trivariate statistical regression by a probabilistic
measure invariance principle

Consider the non-linear system with two input variables and two output vari-
ables:

(y, z) = ϕ(x1, x2), (4)

where (x1, x2) ∈ X1×X2 ⊂ R
2, (y, z) ∈ Y ×Z ⊂ R

2 and ϕ : X1×X2 → Y×Z.
The non-linear system is supposed to be invertible in the domain of interest
and its inverse is denoted by ϕ−1 : Y × Z → X1 ×X2.

Assume that (x1, x2) are random variables with joint probability density
function denoted by px1,x2

(x1, x2). Such random variables transform into two
random variables (y, z) that are distributed according to the probability den-
sity function py,z(y, z). Define the Jacobian of the system ϕ as:

Jϕ(x1, x2)
def
=

[

∂y
∂x1

∂y
∂x2

∂z
∂x1

∂z
∂x2

]

. (5)

The principle of invariance of probabilistic measures prescribes that the
joint probability density function of the output variates be related with the
joint probability density function of the input variates by the relationship:

| detJϕ(x1, x2)|(py,z ◦ ϕ)(x1, x2) = px1,x2
(x1, x2), (6)

where symbol | · | denotes absolute value. As the non-linear function ϕ was
supposed to be invertible, the matrix-function J(x1, x2) is non-singular in
X1 × X2, and hence the scalar-function det Jϕ(x1, x2) is everywhere non-zero
in X1 ×X2. Consequently, the sign of the quantity det Jϕ stays constant over
the domain of regression. The main idea behind isotonic statistical regression
based on the above considerations is that, whenever the probability density
functions px1,x2

and py,z are known and a non-linear model that links the four
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variates x1, x2, y, z as in equation (4) is sought for, the equation (6) provides
(differential) constraints to be satisfied by the model.

In the case of interest in the present work, the non-linear model includes
three variates x1, x2, y. To fix the ideas, assume that the regression model
y = f(x1, x2) is chosen such that ∂f

∂x1

> 0 and ∂f
∂x2

> 0. In order to exploit
the relationship (6) between four variates to model a relationship between
the three variates of interest in the present context, construct the non-linear
system:

(y, z) = ϕ(x1, x2)
def
= (f(x1, x2), x2). (7)

In this case, the det-Jacobian reads det Jϕ = ∂f
∂x1

> 0, thus the equation (6)
gives:

∂f(x1, x2)

∂x1
=

px1,x2
(x1, x2)

py,x2
(f(x1, x2), x2)

. (8)

Further, construct the non-linear system:

(y, z) = ϕ(x1, x2)
def
= (f(x1, x2), x1). (9)

In this case, the det-Jacobian reads detJϕ = − ∂f
∂x2

< 0, thus the equation (6)
gives:

∂f(x1, x2)

∂x2
=

px1,x2
(x1, x2)

py,x1
(f(x1, x2), x1)

. (10)

The above two conditions must be satisfied at the same time, therefore the
non-linear 2-to-1 regression model f may be calculated by solving the system of
two partial differential equations (8) and (10) equipped with suitable boundary
conditions. The required marginal probability density functions are obtained
as:

py,x1
(y, x1) =

∫

X2

py,x1,x2
(y, x1, x2) dx2, (11)

py,x2
(y, x2) =

∫

X1

py,x1,x2
(y, x1, x2) dx1, (12)

px1,x2
(x1, x2) =

∫

Y

py,x1,x2
(y, x1, x2) dy (13)

and are known, while the system of partial differential equations (8) and (10)
needs to be solved for the unknown model f .

It is worth recalling that the relationship between the independent variables
and the dependent variable is captured by the conditional probability density
function py|x1,x2

(y, x1, x2), which is linked to the marginal probability density
function of the three variates by:

py,x1,x2
(y, x1, x2) = py|x1,x2

(y, x1, x2)px1,x2
(x1, x2). (14)

The choice of the type of predicted dependency (monotonically increas-
ing or monotonically decreasing) relies ultimately on the understanding of the
physical phenomenon behind the data. A help about this matter may come
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from a correlation analysis of the dependency of the variate-pair (x1, y) and
of the dependency of the variate-pair (x2, y). From the statistical viewpoint,
the hypothesis about the kind of dependency based on the understanding of
the phenomenon underlying the data may be analyzed from an inferential
viewpoint. In this respect, the hypothesis test described in [11], which as-
sumes Gaussian errors, and hypothesis test described in [10], which is purely
non-parametric, are of use. If the hypothesis test confirms that the sought-for
relationship is (non strictly) monotonic, it is still necessary to deal with the
possibility that a special case occurs, namely, that the model be constant. Spe-
cific tests were developed in order to detect such occurrence, as described in
[6,7]. In addition, if the relationship is isotonic in a strict sense, then a further
analysis may be carried out in order to check if the restrictions underlying the
regression method are fulfilled: Among others, the existence of the first-order
derivative at any point, being the derivative strictly positive. The work [4] al-
lows to check for the strict monotonicity behavior provided that the regression
is continuously differentiable (to certain degree) and the standardized errors
are independent, identically distributed.

3 Statistical regression: Solution of the differential system

The present section deals with the analytic treatment of the system of partial
differential equations (8) and (10). Such system of partial differential equations
is an instance of the differential system:

{

∂y
∂x1

= F1(y, x1, x2),
∂y
∂x2

= F2(y, x1, x2),
(15)

where:

F1(y, x1, x2)
def
=

px1,x2
(x1, x2)

py,x2
(y, x2)

, F2(y, x1, x2)
def
=

px1,x2
(x1, x2)

py,x1
(y, x1)

. (16)

The differential system (15) needs to be equipped with a set of suitable bound-
ary conditions as, for instance, y(x̃1, x̃2) = ỹ, provided that (x̃1, x̃2) ∈ X1×X2

and ỹ ∈ Y. The functions F1 : Y × X1 × X2 → R and F2 : Y × X1 × X2 → R

are known and the solution of the system of differential equations is written
as y = f(x1, x2).

The functions F1 and F2 are defined only on the supports of the probability
density functions py,x2

and py,x1
. Namely, define:

Supp(py,x1
)
def
= {(y, x1) ∈ Y × X1|py,x1

(y, x1) 6= 0}, (17)

Supp(py,x2
)
def
= {(y, x2) ∈ Y × X2|py,x2

(y, x2) 6= 0}, (18)

then the function F1 is well-defined over the set X1 × Supp(py,x2
), while the

function F2 is well-defined over X2 × Supp(py,x1
).
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The approach discussed in the present paper to solve the problem (15) is
based on the reformulation of the differential system of equations (8) and (10)
as a non-linear integral equation.

In what follows, it is assumed that the sets X1,X2,Y are bounded intervals.

Moreover, it pays to define y
def
= min{Y}.

3.1 Reformulation of the system (15) as a non-linear integral equation

Define a kernel function q : Y → R
+. As y = f(x1, x2), the following identity

holds:

q(y) dy = q(f(x1, x2))

[

∂f(x1, x2)

∂x1
dx1 +

∂f(x1, x2)

∂x2
dx2

]

. (19)

Define the gradient of the function f , in rectangular coordinates, as ∇f , and
a smooth path γ that joins the boundary point of coordinates (x̃1, x̃2) with
the point of current coordinates (x1, x2). Then, the following integral equality
holds:

∫ y

y

q(u) du = c+

∫

γ

q(f(r))∇f(r) · dr, (20)

where c ∈ R is a constant that depends on the boundary condition, r =
(ξ1, ξ2) denotes the coordinates over the path and · denotes inner product.
(The integral on the right-hand side is a line integral over the path γ.) If
the path γ is parameterized by functions ξ1 = ξ1(u) and ξ2 = ξ2(u), with
u ∈ [0, 1], such that ξ1(0) = x̃1, ξ2(0) = x̃2 and ξ1(1) = x1, ξ2(1) = x2, by the
equations (15), the equation (20) takes on the form of a functional equation:

∫ f(x1,x2)

y
q(u) du =

c+
∫ 1

0
q(f(ξ1, ξ2))

[

F1(f(ξ1, ξ2), ξ1, ξ2)
dξ1
du + F2(f(ξ1, ξ2), ξ1, ξ2)

dξ2
du

]

du.

(21)
The kernel function may be chosen in different ways. In the following, a few
possible choices are explored and discussed.

The first choice of kernel function discussed in the present paper is based
on the following auxiliary quantities. Define:

py(y)
def
=

∫

X1×X2

py,x1,x2
(y, x1, x2) dx1 dx2, (22)

Py(y)
def
=

∫ y

y

py(u) du, (23)

and denote by P−1
y : [0, 1] → Y the inverse of the function Py : Y → [0, 1].

Define the conditional probability density functions:

px1|y(x1, y)
def
=

py,x1
(y, x1)

py(y)
, (24)

px2|y(x2, y)
def
=

py,x2
(y, x2)

py(y)
. (25)
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The integrands on the right-hand side of the integral equation (21) obey the
system of equations (8) and (10) and thus the following identities hold:

py(f(x1, x2))
∂f(x1, x2)

∂x1
=

px1,x2
(x1, x2)

px2|y(x2, f(x1, x2))
, (26)

py(f(x1, x2))
∂f(x1, x2)

∂x2
=

px1,x2
(x1, x2)

px1|y(x1, f(x1, x2))
. (27)

Taking q = py, the integral equation (21) may be rewritten compactly as:

Py(f(x1, x2)) = c+

∫ 1

0

[

px1,x2
(ξ1, ξ2)

px2|y(ξ2, f(ξ1, ξ2))

dξ1
du

+
px1,x2

(ξ1, ξ2)

px1|y(ξ1, f(ξ1, ξ2))

dξ2
du

]

du.

(28)
Such formulation coincides with the formulation obtained in [12,13] in the
case that a single (dominant) independent variate is present and hence consti-
tutes a generalization of the 1-to-1 regression equation studied in the previous
contributions [12,13]. The above integral equation may be rewritten as the
functional equation in the unknown f :

f(x1, x2) =

P−1
y

[

c+
∫ 1

0

(

px1,x2
(ξ1,ξ2)

px2|y(ξ2,f(ξ1,ξ2))
dξ1
du +

px1,x2
(ξ1,ξ2)

px1|y(ξ1,f(ξ1,ξ2))
dξ2
du

)

du
]

. (29)

In the case that the independent variables x1, x2 are statistically independent
of each other, the identity px1,x2

= px1
px2

holds, hence the functional equation
(29) simplifies into:

f(x1, x2) =

P−1
y

[

c+
∫ 1

0

(

px1
(ξ1)px2

(ξ2)

px2|y(ξ2,f(ξ1,ξ2))
dξ1
du +

px1
(ξ1)px2

(ξ2)

px1|y(ξ1,f(ξ1,ξ2))
dξ2
du

)

du
]

. (30)

The general integral equation in the case of mixed monotonically increas-
ing/decreasing behavior with respect to the independent variables reads:

f(x1, x2) =

P−1
y

[

c+
∫ 1

0

(

± px1,x2
(ξ1,ξ2)

px2|y(ξ2,f(ξ1,ξ2))
dξ1
du ± px1,x2

(ξ1,ξ2)

px1|y(ξ1,f(ξ1,ξ2))
dξ2
du

)

du
]

. (31)

The main disadvantage of the above formulation is that it requires the com-
putation of conditional probabilities and that the division by the conditional
probabilities leads to computational burden and numerical difficulties. More-
over, the cumulative density function (23) results invertible only if py(y) 6= 0
for all y ∈ Y.

Another possible choice of the kernel function that was explored is q = 1.
Such choice leads to the integral equation:

f(x1, x2) =

y + c+
∫ 1

0

(

± px1,x2
(ξ1,ξ2)

py,x2
(f(ξ1,ξ2),ξ2)

dξ1
du ± px1,x2

(ξ1,ξ2)

py,x1
(f(ξ1,ξ2),ξ1)

dξ2
du

)

du, (32)
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where the signs can be chosen according to the character of the model. Such
equation looks simpler than the equation (31). However, an important problem
about the numerical integration of such equation arises. In fact, it is clear that
the integrands on the right-hand side of above equation may be evaluated
correctly only over the support of the probability density functions py,x1 and
py,x2

. Such supports do not possess a regular/simple shape, in general, which
makes it difficult to implement numerically the line integral over a curve γ
which should belong entirely to the supports. An example of curly supports
is illustrated in the Figure 1. The exemplary supports were obtained with
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2

Fig. 1 An example of curly supports (numerically estimated) of the probability density
functions py,x1

and py,x2
.

f(x1, x2) = log(2x2
1 +x2+1), x1 randomly drawn from a uniform distribution

in [0, 2], x2 randomly drawn from a uniform distribution in [0, 4] and y =
f(x1, x2)+ν1, where ν1 is a Gaussian noise with zero mean and variance 10−4.
A total of 3, 000 samples were generated to get an approximate picture of the
supports Supp(py,x1

) and Supp(py,x2
).

The present formulation that relies on recasting the system of first-order
partial differential equations (15) into a non-linear functional equation enjoys
the following features:

– The formulation (32) does not need complicated calculations to evaluate
the right-hand side.

– The resulting model is certainly monotonic by construction.
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The differential (and the integral) formulation needs suitable boundary
conditions to become complete.

3.2 Boundary conditions

In principle, consistent boundary conditions may be chosen freely on the basis
of any prior knowledge on the model function f . The fact that there is not
any intrinsic way o establishing a boundary condition implies that the model
f may be estimated up to an additive constant.

A special boundary condition is devised as follows. Define x1
def
= min{X1}

and x2
def
= min{X2}. As the function y = f(x1, x2) is monotonically increasing

with respect to both independent variables, the identity f(x1, x2) = y holds.
The choice x̃1 = x1 and x̃2 = x2 leads to the condition c = 0.

Another special boundary condition, that retraces the center-of-mass-to-
center-of-mass-mapping condition utilized in [12] is as follows. Define:

xm
1

def
=

∫

X1×X2

px1,x2
(x1, x2)x1 dx1 dx2, (33)

xm
2

def
=

∫

X1×X2

px1,x2
(x1, x2)x2 dx1 dx2, (34)

ym
def
=

∫

Y

py(y)y dy. (35)

A center-of-mass-to-center-of-mass-mapping condition casts as f(xm
1 , x

m
2 ) =

ym. The center-of-mass-to-center-of-mass-mapping condition leads to a value
of the displacement c = ym − y.

4 Numerical solution of the differential system (15)

The present section discusses the problem of numerically representing the
quantities of interest and of numerically solving the general system (15) of
two partial differential equations with no regard to the statistical regression
problem in particular. The next section will deal with the specific problem of
statistical regression.

It is assumed that the set X1 is a bounded interval [x1, x1] and that
the set X2 is a bounded interval [x2, x2]. The interval X1 is subdivided into

B1 subintervals of equal width h1
def
= (x1 − x1)/B1 and the interval X1 is

subdivided into B2 subintervals of equal width h2
def
= (x2 − x2)/B2.

The solution y = f(x1, x2) of the differential system (15) is represented by
a (B2+1)×(B1+1) matrix y of components yi,j , with i = 1, . . . , B2+1 and j =
1, . . . , B1+1. Note that the index i represents the rows of the matrix y, hence
it is associated with the variable x2, while the index j represents the columns
of the matrix y, hence it is associated with the variable x1. The quantity yi,j
represents an approximation of the true value y(x1+(j− 1)h1, x2+(i− 1)h2).
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b b

b

(x̃1, x̃2) (x1, x̃2)

(x1, x2)

γ

Fig. 2 Integration line γ to solve the functional equation (21).

The structure of the functional equation (21) suggests a possible algo-
rithmic solution based on a fixed-point iteration. In the present section it is
assumed that the support of the function py,x1

coincides with the rectangle
Y ×X1 and that the support of the function py,x2

coincides with the rectangle
Y × X2. If such assumption holds true, the integration path γ may be chosen
coincident with the union of the horizontal segment that connects the point
(x̃1, x̃2) with the point (x1, x̃2) and of the vertical segment that connects the
point (x1, x̃2) with the point (x1, x2), as illustrated in the Figure 2, where
x̃1 ∈ X1 and x̃2 ∈ X2 may be chosen arbitrarily.

The functional equation (21), for a unitary kernel function, for an integra-
tion path γ as in Figure 2 with x̃1 = x1 and x̃2 = x2, and with boundary
condition set as f(x1, x2) = y, reads:

f(x1, x2) = y +

∫ x1

x
1

F1(f(u, x2), u, x2) du +

∫ x2

x
2

F2(f(x1, u), x1, u) du. (36)

The above functional equation may be solved numerically on a computation
platform – upon discretization of the domains X1 × X2 and Y – by means
of any numerical quadrature rule and by putting into effect an appropriate
iterative numerical scheme. The quadrature rule of choice is the left Riemann
sum:

∫ b

a

ϕ(u) du ≈ ϕ(a)(b − a),

for a, b finite and ϕ : [a, b] → R integrable. Although an approximate quadra-
ture of the above integral might be obtained by other known methods, e.g.,
the midpoint rule, the trapezoid rule or the Cavalieri-Simpson rule:

∫ b

a

ϕ(u) du ≈ ϕ

(

a+ b

2

)

(b − a),

∫ b

a

ϕ(u) du ≈ ϕ(a) + ϕ(b)

2
(b− a), · · · ,

it should be recognized that the use of a ‘left Riemann sum’ facilitates the
handling of the boundary conditions and ensures that the monotonicity of the
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model is preserved. In such context, the functional equation (36) gives rise to
the set of equations:

yi,j = y + h1

j−1
∑

s=1

F1(y1,s, x1 + (s− 1)h1, x2) +

h2

i−1
∑

r=1

F2(yr,j , x1 + (j − 1)h1, x2 + (r − 1)h2), (37)

for i = 2, . . . , B2 + 1 and j = 2, . . . , B1 + 1. Further conditions are:

y1,j = y + h1

j−1
∑

s=1

F1(y1,s, x1 + (s− 1)h1, x2), for j > 1, (38)

yi,1 = y + h2

i−1
∑

r=1

F2(yr,1, x1, x2 + (r − 1)h2), for i > 1, (39)

y1,1 = y. (40)

It is convenient to rewrite such system of non-linear equations by the conven-
tional representation:

y = T (y), (41)

where the matrix y represents the whole set of unknowns and the symbol
T represents a non-linear operator. Then, a fixed-point iterative scheme may
generate a sequence y(k), with k = 0, 1, 2, . . ., of increasingly-refined approxi-
mations of the true solution to the system (15), computed by the recurrence
rule:

y(k+1) = T (y(k)), (42)

where the quantity y(0) denotes a suitably-chosen initial guess. Due to the
non-linear structure of the fixed-point recurrence rule (42), no theoretical re-
sults are available at present about its convergence features, which are rather
analyzed from a numerical perspective in Section 5.

A pseudocode to implement a possible instance of the above numerical
scheme is reported in the Algorithm 1. Note that in the Matlab c© framework,
the two inner cycles of the Algorithm 1 may be implemented efficiently by
making use of the function ‘cumsum’. The purpose of the pseudocode explained
in the present section is to illustrate and clarify the basic notions behind the
implementation of the discussed numerical procedures. More refined and better
optimized versions could be implemented, indeed.

4.1 Numerical tests

The numerical procedures devised in the present section will be tested on two
test-problems:
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Algorithm 1 Pseudocode to implement the numerical solution of the differen-
tial system (15) of partial differential equations reformulated as the non-linear
integral equation (21).

� Input domain boundaries x1, x1, x2, x2, numbers of subdivisions B1, B2, functions
F1, F2 and boundary value y

Compute widths h1 =
x1−x

1

B1

and h2 =
x2−x

2

B2

Set y
(0)
i,j = y for every i = 1, . . . , B2 + 1 and j = 1, . . . , B1 + 1

for k = 0, 1, 2, . . . do
for i = 2 to B2 + 1 do

Compute y
(k+1)
i,1 = y + h2

∑i−1
r=1 F2(y

(k)
r,1 , x1, x2 + (r − 1)h2)

for j = 2 to B1 + 1 do

if i = 1 then

Compute y
(k+1)
1,j = y + h1

∑j−1
s=1 F1(y

(k)
1,s , x1 + (s− 1)h1, x2)

end if

Compute y
(k+1)
i,j = y+h1

∑j−1
s=1 F1(y

(k)
1,s , x1+(s−1)h1, x2)+h2

∑i−1
r=1 F2(y

(k)
r,j , x1+

(j − 1)h1, x2 + (r − 1)h2)
end for

end for

end for

� Output result y

– Test problem 1: The problem is defined by the functions F1(y, x1, x2) =
y − 2x1 − x2 + 1 and F2(y, x1, x2) = y − 2x1 − x2, by the intervals X1 =
[0, 1] and X1 = [0, 2] and by the boundary condition f(0, 0) = 1. The
exact solution of this problem is f(x1, x2) = 2x1 + x2 + 1. The partitions
cardinality are B1 = 10 and B2 = 15.

– Test problem 2: The problem is defined by the functions F1(y, x1, x2) =
4x1e

−y and F2(y, x1, x2) = e−y, by the intervals X1 = [0, 1] and X1 = [0, 2]
and by the boundary condition f(0, 0) = 0. The exact solution of this
problem is f(x1, x2) = log(2x2

1 + x2 + 1). The partitions cardinality are
B1 = 15 and B2 = 20.

The pairs (x1, x2) of independent variates are generated uniformly in X1 ×X2

and the variate y is generated by the rule y = f(x1, x2) + ν1, with ν1 being a
zero-mean Gaussian noise. A total of 3, 000 samples were made available for
the numerical simulations.

The following numerical results illustrate the behavior of the Algorithm 1
on the two test problems. The following discrepancy measures are made use
of in order to evaluate the progress of the iterative method:

Point-wise absolute error at (i, j) =

∣

∣

∣

∣

∣

y
(k+1)
i,j − y⋆i,j

y⋆i,j

∣

∣

∣

∣

∣

, (43)

Mean relative error =
‖y(k+1) − y(k)‖F
(B1 + 1)(B2 + 1)

, (44)

Mean absolute error =
‖(y(k+1) − y⋆)⊘ y⋆‖F

(B1 + 1)(B2 + 1)
, (45)
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Fig. 3 Numerical behavior of the Algorithm 1 on the Test problem 1. Top-left panel: Mean
relative error. Top-right panel: Mean absolute error. Bottom-left panel: Estimated solution
superimposed with the actual solution (lighter colors surface). Bottom-right panel: Point-
wise absolute error.

where y⋆ denotes the matrix of values corresponding to the actual solution
f , symbol ⊘ denotes entry-wise division and symbol ‖ · ‖F denotes Frobenius
norm. Note that the above errors refer to the actual value of the model, hence
they take into account the additive noise ν1 too.

The Figure 3 illustrates the numerical behaviour of the Algorithm 1 on the
Test problem 1, run over 20 iterations, in terms of relative error and absolute
error. The variance of the noise ν1 was 10−4. The data-model to estimate is
linear in both independent variables and the estimation result is excellent over
the whole domain X1 ×X2.

The Figure 4 illustrates the numerical behavior of the Algorithm 1 on the
Test problem 2, run over 15 iterations, in terms of relative error and absolute
error. The variance of the noise ν1 was 10−4. The data-model to estimate
is non-linear in both independent variables and the estimation result looks
acceptable over the whole domain X1 × X2, although it seems better in the
central part of the domain than near the border of the domain.

The above numerical experiments were conducted by choosing a number
of samples and subdivision numbers that might mimic a real-world situation.
The number of subdivisions may be increased and, up to a certain extent, this
would increase the precision of the estimation (at the expense of an increased
computation burden). From the above numerical results it may be concluded
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Fig. 4 Numerical behavior of the Algorithm 1 on the Test problem 2. Top-left panel: Mean
relative error. Top-right panel: Mean absolute error. Bottom-left panel: Estimated solution
superimposed with the actual solution (lighter colors surface). Bottom-right panel: Point-
wise absolute error.

that the Algorithm 1 works properly and that it converges in a few iterations
to a solution close to the actual one.

5 Numerical implementation of statistical regression

The present section discusses the problem of numerically coping with the sta-
tistical regression problem in particular. It basically covers two topics: How
to estimate numerically the required probability density functions and how to
modify the Algorithm 1 to the case where the functions F1 and F2 are given by
numerical approximations of the relationships (16) and a different boundary
condition is used.

In order to improve the numerical accuracy of the devised statistical regres-
sion procedure, the center-of-mass-to-center-of-mass-mapping boundary con-
dition will be made use of. The available data are grouped into N sample-pairs
(sx1,

sx2), (
sy,sx1) and (sy,sx2). The empirical average values of the samples are

computed as:

xm
1 =

∑

s
sx1

N
, xm

2 =

∑

s
sx2

N
, ym =

∑

s
sy

N
. (46)

The use of the center-of-mass-to-center-of-mass-mapping boundary condition
causes a constant bias of the result that could be mitigated by a least-squares
fitting of the obtained model.
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5.1 Estimation of the required probability density functions

The first implementation issue concerns the estimation of the joint probabil-
ity density functions involved in the statistical regression theory devised in
Section 2. The probability density functions to estimate are px1,x2

, py,x1
and

py,x2
. The goal of density estimation is to take a finite sample of data and to

make inferences about the underlying probability density function everywhere,
including where no data are observed. Two popular methods for multivariate
density estimation are [24]:

– Histogram-based estimates: Such method is based on counting the
number of samples that fall within each subdivision that the domain of
the involved variates is partitioned into. This is the method utilized in the
previous contribution [12,13]. This method is non-parametric and compu-
tationally inexpensive. However, when joint probability density functions
estimates are sought for, the obtainable estimates are sensible only in pres-
ence of a large number of samples because the total number of partitions
grows quickly with the number of partitions of the support of each variate.
The histogram-based method provides a purely numerical representation of
probability density function and does not possess, as is, any interpolation
ability to predict the values of the distribution besides the values present
in the data sets.

– Mixture of kernels: Such method is based on the approximation of a
probability density function as a superposition of properly scaled and cen-
tered kernels (for example, Gaussian ‘bells’). In kernel density estimation,
the contribution of each data point is smoothed out from a single point into
a region of space surrounding it. Aggregating the individually smoothed
contributions gives an overall picture of the structure of the data and of
its density function. Such method is computationally more expensive than
other non-parametric methods but it is profitable even when the number
of samples is limited. The mixture-of-kernel method provides a continuous
functional representation of the estimate of probability density functions,
hence it inherently exhibits interpolation as well as extrapolation abilities.

The present research is based on the assumption that the available data are
enough to extract their probability density function by a histogram method,
which also warrants a limited computational burden. Therefore, the histogram-
based estimation method only is made use of within the present contribution.

The histogram-based estimate of the joint probability density function of
two variates z1 ∈ Z1 and z2 ∈ Z2, with Z1 is a bounded interval [z1, z1]
and Z2 is a bounded interval [z2, z2], may be implemented as follows. Let
S1 and S2 be the number of subdivisions (or bins) of the intervals Z1 and
Z2, respectively. The widths w1 and w2 of the subdivisions are related to the
number of partitions by:

S1 =

⌊

z1 − z1
w1

⌋

, S2 =

⌊

z2 − z2
w2

⌋

, (47)
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where symbol ⌊·⌋ returns the nearest integer toward −∞. Denote by Hz1,z2
i,j

the histogram count of the (i, j)th bin and by (sz1,
sz2) ∈ Z1 × Z2 the sth

sample-pair. The indexes-pair of the subdivision that the sample-pair (sz1,
sz2)

falls in is given by:

js =

⌊

sz1 − z1
w1

⌋

+ 1, is =

⌊

sz2 − z2
w2

⌋

+ 1. (48)

In order to force the support of the estimated probability density function to
coincide with the whole domain Z1 ×Z2, any zero entry of the matrix H may
be set to 1. Such setting distorts the shape of the actual probability density
function pz1,z2 but, if the number of samples is sufficiently large, the caused
distortion is negligible.

In order to make the estimated histogram smoother, it may be convolved
by a smoothing kernel K, as, for instance:

K = K3
def
=





1 1 1
1 1 1
1 1 1



 . (49)

Then the smoothed-out histogram estimate is computed by H̃z1,z2 = Hz1,z2 ∗
K.

The obtained probability density function estimate is represented by a
(S2+1)× (S1+1) matrix p̂z1,z2 = AH̃z1,z2 , where the normalization constant
A > 0 ensures that the probability density function integrates to the unity,
namely, the constant A is chosen in such a way that:

A
∑

i,j

H̃z1,z2
i,j w1w2 = 1. (50)

The number of partitions of the interval X1 is denoted by S1 and its width
is denoted by w1, the number of partitions of the interval X2 is denoted by S2

and its width is denoted by w2, and the number of partitions of the interval
Y is denoted by Sy and its width is denoted by wy. The width of partitions
may be chosen on the basis of the rules adapted from [24]:

w1 =
7

2
σ̂1N

− 1

4 , w2 =
7

2
σ̂2N

− 1

4 , wy =
7

2
σ̂yN

− 1

4 , (51)

where σ̂1 denotes the empirical standard deviation of the variate x1, σ̂2 denotes
the empirical standard deviation of the variate x2 and σ̂y denotes the empirical
standard deviation of the variate y and N denotes the cardinality of the sets
X1, X2 and Y.
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5.2 Algorithmic formulation of statistical regression

On the basis of the histogram estimation method recalled in the previous
subsection, matrices p̂x1,x2 of size (S2 + 1)× (S1 + 1), computed on the basis
of the sample-pairs (sx1,

sx2), p̂
y,x1 of size (S1+1)× (Sy+1), computed on the

basis of the sample-pairs (sy,sx1) and p̂y,x2 of size (S2+1)×(Sy+1), computed
on the basis of the sample-pairs (sy,sx2) are available, which represent the joint
probability density functions required by the statistical regression procedure
to compute the functions F1 and F2 to integrate numerically. The number of
available samples is denoted again by N .

Although the domain of the independent variates is X1 × X2, it is conve-
nient to define a sub-domain [x

1
, x1] × [x

2
, x2] ⊂ X1 × X2 where regression

will actually be performed. Such a sub-domain gets partitioned into B1 × B2

partitions of widths:

h1
def
=

1

B1

(

x1 − x
1

)

, h2
def
=

1

B2

(

x2 − x
2

)

. (52)

The above sub-domain is supposed to contain the point (xm
1 , x

m
2 ).

Any numerical value of a variable possesses a different representation in the
matrix that represents a joint probability density function and in the matrices
that will represent the functions F1(y, x1, x2) and F2(y, x1, x2), due to the
different sizes of the domains and of the widths of the subdivisions. Consider
such relationships in details:

– For the variable x1, denote by c its representation in the model-domain
and by n1 its representation in the histogram domain. Given a model-
domain index c ∈ {1, . . . , B1 + 1}, its corresponding variable value is x1 =
x
1
+ (c− 1)h1. The corresponding index in the histogram domain is n1 =

⌊(x1 − x1)/w1⌋+ 1. The overall index-to-index mapping reads, thus:

n1(c)
def
=

⌊

x
1
+ (c− 1)h1 − x1

w1

⌋

+ 1; (53)

– For the variable x2, denote by r its representation in the model-domain
and by n2 its representation in the histogram domain. Given a model-
domain index r ∈ {1, . . . , B2 +1}, its corresponding variable value is x2 =
x
2
+ (r − 1)h2. The corresponding index in the histogram domain is n2 =

⌊(x2 − x2)/w2⌋+ 1. The overall index-to-index mapping reads, thus:

n2(r)
def
=

⌊

x
2
+ (r − 1)h2 − x2

w2

⌋

+ 1; (54)

– For the variable y, given a value in Y, the corresponding index in the
histogram domain is:

ny(y)
def
=

⌊

y − y

wy

⌋

+ 1. (55)
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The values of the regression model over the sub-domain of interest are
represented by a (B2 + 1)× (B1 + 1) matrix y. The functions F1 and F2 may
be represented numerically by matrices of sizes (B2 + 1) × (B1 + 1), whose
entries are calculated as follows:

– The entry of position (r, c) of the matrix F1 is calculated as:

(F1)r,c = ±
p̂x1,x2

n2(r),n1(c)

p̂y,x1

n1(c),ny(yr,c)

; (56)

– The entry of position (r, c) of the matrix F2 is calculated as:

(F2)r,c = ±
p̂x1,x2

n2(r),n1(c)

p̂y,x1

n2(r),ny(yr,c)

. (57)

The indexes in the model-domain corresponding to the average values of
the independent variates are compute as:

rm
def
=

⌊

xm
2 − x2

w2

⌋

+ 1, cm
def
=

⌊

xm
1 − x1

w1

⌋

+ 1, (58)

and the center-of-mass-to-center-of-mass-mapping boundary condition is ex-
pressed by yrm,cm = ym.

The numerical implementation of the regression method consists in the
modification of the Algorithm 1 to integrate the functions F1 and F2 on lines
that connect any point of indexes (r, c) in the model domain to the ‘boundary
point’ of indexes (rm, cm) (which actually locates allegedly at the center of
the domain). (A number of numerical issues that were taken care of in the
actual computer implementation were omitted from the present description
for brevity.)

5.3 Numerical tests

In the present section, numerical tests about the estimation ability of the
devised statistical regression algorithm are presented and discussed, with ref-
erence to the same Test problem 1 and Test problem 2 of subsection 4.1. The
numerical evaluation of the behavior of the devised statistical regression algo-
rithm is made through the error evaluation functions described in the subsec-
tion 4.1. It is worth noting here that the expression (45) of the mean absolute
error utilizes a weight 1√

(B1+1))(B2+1)
which is the same for each entry of the

matrix (y(k+1) − y⋆)⊘ y⋆. A different way of measuring the absolute estima-
tion error would be to weight each entry of the matrix (y(k+1) − y⋆)⊘ y⋆ by
the corresponding entry of the estimated probability density function p̂x1,x2 .
Such weighting scheme gives rise to the

Weighted absolute error = ‖px1,x2 ⊗ (y(k+1) − y⋆)⊘ y⋆‖F, (59)
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Fig. 5 Result of numerical estimation of the joint probability density functions px1,x2
,

py,x1
and py,x2

, from left to right, on the Test problem 1. Bivariate probability estimates
are obtained by a histogram-based method.

where symbol ⊗ denotes entry-wise multiplication and matrix px1,x2 denotes
the probability-matrix p̂x1,x2 expressed in the model domain. Analogously, the
point-wise absolute error (43) may be modified by weighting each error by the
corresponding probability value:

Weighted point-wise absolute error at (r, c) = p̂x1,x2

n2(r),n1(c)

∣

∣

∣

∣

∣

y
(k+1)
r,c − y⋆r,c

y⋆r,c

∣

∣

∣

∣

∣

,

(60)

The first numerical experiment is about applying the devised statistical re-
gression method to the Test problem 1. In order to obtain a good estimate of
the probability density functions by the histogrammethod, a considerably high
number of samples was selected, namely N = 10, 000. The number of subdivi-
sions of the axes for probability density function estimation were automatically
selected as S1 = 10, S2 = 10 and Sy = 15. The number of subdivisions of the
axes for model estimation were selected as B1 = 60 and B2 = 70. The variance
of the noise ν1 was 10

−2. In order to correctly evaluate the discrepancy between
the estimated model and the actual model, the constant additive estimation
bias due to the boundary condition was gotten rid of. The sub-domain of in-
terest for model estimation was selected as [0.2034, 0.8644]× [0.3768, 1.7390].
The Figure 5 illustrates the result of numerical estimation of the necessary
joint probability density functions. No smoothing kernel was made use of. The
Figure 6 illustrates the numerical behavior of the statistical regression algo-
rithm, run over 10 iterations, in terms of mean absolute error and of weighted
absolute error. In this experiment, the data-model to estimate is linear in
both independent variables and the estimation result is good over the cho-
sen sub-domain. The statistical regression algorithm does converge in a few
iterations (less than 5, in this example). The weighted absolute error, in par-
ticular, evidences how the modeling procedure is less accurate at the border
of the support of the probability density functions. The Figure 7 compares
the estimated model with the actual model, on the two sections f(x1, x

m
2 )

and f(xm
1 , x2). The figure also shows some data-points superimposed to the
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Fig. 6 Numerical behavior of the statistical regression algorithm on the Test problem 1.
Top-left panel: Mean absolute error during iteration of the algorithm. Top-right panel: Point-
wise absolute error after 10 iterations. Bottom-left panel: Weighted mean absolute error
during iteration of the algorithm. Bottom-right panel: Weighted point-wise absolute error
after 10 iterations.

estimated model. The estimated model looks in excellent agreement with the
actual model in the selected sub-domain.

The second numerical experiment is about applying the devised statis-
tical regression method to the Test problem 2. In order to obtain a good
estimate of the probability density functions, N = 10, 000 samples were gen-
erated. The number of subdivisions of the axes for probability density func-
tion estimation were automatically selected as S1 = 10, S2 = 10 and Sy =
15. The number of subdivisions of the axes for model estimation were se-
lected again as B1 = 60 and B2 = 70. The variance of the noise ν1 was
25×10−4. The sub-domain of interest for model estimation was selected again
as [0.2034, 0.8644] × [0.3768, 1.7390]. The Figure 8 illustrates the result of
numerical estimation of the necessary joint probability density functions. No
smoothing kernel was made use of. The Figure 9 illustrates the numerical be-
haviour of the statistical regression algorithm, run over 10 iterations, in terms
of absolute error. In this experiment, the data-model to estimate is non-linear
in both independent variables and the estimation result is good over the cho-
sen sub-domain. The statistical regression algorithm does converge in a few
iterations (less than 5, in this example). The Figure 10 compares, in particular,
the estimated model with the actual model, on the two sections f(x1, x

m
2 ) and

f(xm
1 , x2). The figure also shows some data-points superimposed to the esti-
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Fig. 7 Numerical behaviour of the statistical regression algorithm on the Test problem 1.
Comparison of the estimated model with the actual model on the two sections f(x1, x

m
2 )

and f(xm
1 , x2).
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Fig. 8 Result of numerical estimation of the joint probability density functions px1,x2
,

py,x1
and py,x2

, from left to right, on the Test problem 2. Bivariate probability estimates
are obtained by a histogram-based method.

mated model. The estimated model looks in good agreement with the actual
model in the selected sub-domain.

The third numerical experiment concerns the empirical convergence anal-
ysis of the devised statistical regression algorithm on the data set of Test
problem 1. In particular, the experiment aims at examining the convergence
capability of the fixed-point algorithm (42) in relation to the number of avail-
able data-points N . The number N varies, with a logarithmic law, from 1, 000
to 100, 000 and, for each value of N , as much as 50 independent trials were
conducted (by generating a new data-set over each trial). The number of suc-
cessful trials over the whole set of trials and the average mean absolute error
(calculated over the successful trials) are shown in the Figure 11. From the
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Fig. 9 Numerical behavior of the statistical regression algorithm on the Test problem 2.
Top-left panel: Mean absolute error during iteration of the algorithm. Top-right panel: Point-
wise absolute error after 10 iterations. Bottom-left panel: Weighted mean absolute error
during iteration of the algorithm. Bottom-right panel: Weighted point-wise absolute error
after 10 iterations.

above empirical results, it is concluded that the fixed-point algorithm (42)
converges steadily if the number of available data-points is sufficiently large
to allow a correct estimation of the bivariate probability density functions.

The fourth numerical experiment is about applying the devised statistical
regression method to the statistical regression problem posed in the contribu-
tion [5], which concerns the formation of acrylamide1 during the process of
cooking French fries. Human exposure to acrylamide through consumption of
French fries and other foods has been recognized as a potential health concern.
Documented studies have found that increased dietary intake of acrylamide
is associated with increased risks of postmenopausal endometrial and ovar-
ian cancer, particularly among nonsmokers, that consumption of French fries
during preschool years is associated with a slightly increased risk of breast can-
cer later in life, and that dietary acrylamide is significantly associated with
increased risk of oral cavity cancer in female nonsmokers [5]. It has been ob-
served that acrylamide formation can be greatly influenced by food processing
conditions: At high temperatures during food processing, foods rich in carbo-

1 Acrylamide [20] is a chemical compound with chemical formula C3H5NO. It is a white
odorless crystalline solid, soluble in water, ethanol, ether and chloroform. Acrylamide de-
composes in the presence of acids, bases, oxidizing agents, iron and iron salts. It decomposes
non-thermally to form ammonia, while its thermal decomposition produces carbon monox-
ide, carbon dioxide and oxides of nitrogen.
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Fig. 10 Numerical behavior of the statistical regression algorithm on the Test problem 2.
Comparison of the estimated model with the actual model on the two sections f(x1, x

m
2 )

and f(xm
1 , x2).

hydrate can go through a series of reactions, to form acrylamide. In terms of
food processing factors affecting acrylamide levels in French fries, frying time
and temperature are the most important key parameters influencing acry-
lamide formation. The study presented in [5] is based on a model that uses
cooking time and temperature as independent variables to predict the con-
centrations of acrylamide in French fries. Such data set is used in the present
experiment as a case-study for the statistical regression method devised in the
Section 2. In this context, the predictor variable x1 denotes the cooking tem-
perature expressed in ◦C, the predictor variable x2 denotes the cooking time in
seconds, while the target variable y denotes the concentration of acrylamide,
expressed in µg/kg. The Figure 12 shows the result of modeling in terms of
two cross-sections f(x1, x

m
2 ) and f(xm

1 , x2). The obtained model seems to fit
the data satisfactorily. The obtained model is able to predict the sudden rise
of the concentration of acrylamide at around x1 = 180◦C, as predicted in [5].
It is also important to underline that, due to the intrinsic limitation of the
proposed statistical regression method, which only allows to model monotonic
behaviors, the obtained model is unable to predict a decrease of acrylamide
concentration for 180◦C < x1 < 190◦C, which was observed in [5] (allegedly,
acrylamide is eliminated through the evaporation process when temperature
rises over 190◦C).
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Fig. 11 Convergence of the statistical regression algorithm on the Test problem 1. Top
panel: Mean absolute error, averaged over the number of successful trials. Bottom panel:
Number of successful trials over a total of 50 trials versus changing cardinality N of the
data sets.

6 Conclusions

The present research work outlined the main ideas behind isotonic statisti-
cal trivariate regression based on the invariance of measures in probabilistic
spaces. The principle of probabilistic measure invariance leads to a system of
two differential constraints to be obeyed to by the sought-after model, along
with the assumed constrain of monotonicity of the model with respect to
both independent variables. Such differential system is reformulated in terms
of a single integral equation that affords an iterative numerical solution. Im-
plementation issues such as the numerical representation and calculation of
the required quantities, the estimation of required joint probability density
functions from the available data and the numerical solution of the obtained
integral equation were discussed. Numerical tests performed on the devised
statistical regression procedure illustrated its features and confirmed that the
model estimation result is good over the chosen sub-domains and that the
iterative statistical regression algorithm converges in a few iterations. A nu-
merical test about modeling the dependency of acrylamide concentration from
frying time and temperature in the cooking of French fries further illustrated
the behavior of the modeling procedure as well as its current limitations.

The present paper illustrated the initial step of a research work on statisti-
cal regression. In order to extend the content of the present work, the following
issues are presently under consideration: 1) Extension of the devised trivari-
ate regression method to a multivariate case with more than two predictors;
2) Selection of few predictors from a set of many on the basis of an analysis
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Fig. 12 Numerical behavior of the statistical regression algorithm on the regression problem
about estimation of acrylamide formation during the process of cooking French fries. The
variable x1 denotes the cooking temperature (◦C), the variable x2 denotes the cooking time
(sec), the variable y denotes the concentration of acrylamide (µg/kg).

of relevance tailored to the present regression model; 3) Estimation of joint
probability density functions by a kernel method in presence of a limited num-
ber of available data; 4) Extension of the present procedure to non-monotonic
models.
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