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Blind Adaptation of Stable Discrete-Time IIR Filters in
State-Space Form

Simone Fiori

Abstract—Blind deconvolution consists of extracting a source sequence approximate closed-form expression for the Bussgang-type learning
and impulse response of a linear system from their convolution. In criterion, as a function of the ISl index, are provided. Numerical

presence of system zeros close to the unit circle, which give rise 10 oq 15 jllustrate the inversion of a two-zero system in a challenging
very long impulse responses, IIR adaptive structures are of use, whose

adaptation should be carefully designed in order to guarantee stability. casg-study. Se‘?tion il presents the extension of the Second‘or_der‘
In this paper, we propose a blind-type discrete-time 1IR adaptive filter ~section adaptation equations to the case of a cascade of an arbitrary
structure realized in state-space form that, with a suitable parameteri- number of two-pole filters. Such extension requires the development
zation of its coefficients, remains stable. The theory is first developed for of a back-propagation-like rule for the simultaneous adaptation of

a two-pole filter, whose numerical behavior is investigated via computer- . ) . .
based experiments. The proposed structure/adaptation theory is then the coefficients of all the filters in the cascade. The behavior of

extended to a multi-pole structure realized as a cascade of two-pole the proposed adaptation filter theory is investigated numerically via
filters. Computer-based experiments are proposed and discussed, which computer-based experiments. Finally, concluding thoughts are given
aim at illustrating the behavior of the filter cascade on several cases of jn Section IV.

study. The numerical results obtained show the proposed filters remain

stable during adaptation and provide satisfactory deconvolution results.

Index Terms—Blind system deconvolution; Bussgang-type deconvolu- Il. FILTER STRUCTURE AND ADAPTATION THEORY FOR A
tion; Discrete-time adaptive filters; Inherently-stable IIR filters; State- SECOND-ORDER SECTION
space form.

We now illustrate the relevant equations related to the inherently-
stable two-pole filtering structure, by briefly recalling the adopted
blind-type adaptation theory. Additionally, we present an analytical
LIND system deconvolution (also known as blind signal restoratudy of the features of the devised algorithm in the two-pole case.

tion) is a challenging problem, which concerns designing thehe present section also illustrates the numerical behavior of the two-
inverse of an unknown linear system driven by an unknown sourgele filter on some blind-deconvolution cases.

signal while observing only its response signal [8], [9]. The user

interest may be upon the forward system impulse response or on

the source signal distorted by the forward linear system. Mady Stable two-pole adaptive filter structure: Description and proper-
engineering applications rely on blind deconvolution, such as chanfi€s

equalization in telecommunication systems [20], blind image de-The adaptive structure investigated in the present section is a

blurring in digital image restoration [17], non-destructive materialacond-order IR section, having complex poles only, whose transfer
evaluation by ultrasonic inspection [22], remote sensing in geoscieng@ction is given by:

[10], [23] and data storage and transmission [5], [18].
The majority of the available blind deconvolution techniques rely W(zn) = L , 1)
on finite-length impulse response (FIR) adaptive filters with a small (1=¢(n)z=1)(1 - ¢*(n)z~1)

number of taps [8], [9]. These structures are appropriate for mitigatimere¢ and¢* are the complex-conjugate poles of the adaptive IIR
the effects of systems whose zeros lie sufficiently far from the uiijtier which depend on the discrete-time indexc Z.

circle. In fact, the presence of zeros close to the unit circle would tpg ¢jassical stability conditions for static (time-invariant) linear
require very long inverse FIR filters and thus the use of |nf|n|teh-|ters are not sufficient — in general — to ensure the stability
length impulse response (lIR) filters would be beneficial in this casgr g dynamical filter. The selection of an adequate time-domain
However, IIR aqlaptive filters trained to have poles close to the ”ri‘riﬁplementation of the adaptive filter (1) is a key issue in order
circle may easily become unstable, therefore one of the reseaghine time-varying filtering structure to remain stable over time. A
topics currently under investigation in adaptive IIR filtering is thegsization that enjoys this feature and exhibits favorable numerical

challenging question of the design ioherently-stabldilters. In the properties [3], [19] is based on state-space equations. A two-pole-
supervised adaptation field (as, e.g., in system identification) sog)e,, input-state-output representation is given by:
convenient solutions have been developed in the recent past [7], [19].
cosf(n) —sinf(n
(m) [ o ) ] x

A new solution, suited to on-line blind adaptation, is the subject of &i(n+1) } =
This paper is organized as follows. Section Il focuses on advancing { &1(n) } { 1 }
+
)

I. INTRODUCTION

s

the present contribution. &(n+1)

the idea presented in the preliminary report [11] by introducing a £a(n)
different filter realization as well as new parameterization for the filter

coefficients and by invoking a different adaptation criterion based u(n) = [ ci(n) ca(n) | [ £2(n) } +d(n)z(n) .

on ‘Bussgang’ theory. A closed form expression for the total inter- 2

symbol interference (ISI), as a function of filter coefficients, and am the above equationg;(n) € R andu(n) € R denote the filter

h thor is with the Dipartimento di Eletronica. Inelii A input and output sequence, respectively, whilen) € R, c2(n) € R
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fiori ~ @deit.univpm.it . Also, the quantitieg:(n) € R and&z2(n) € R denote the filter state
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variables. The filter input sequence is driven by the forward systaimnder the assumption that the system-filter-cascade total impulse

output sequence, defined as: response is sufficiently long, which clearly holds for a IIR filter at the
L beginning of adaptation stage (please also see details in Appendix II).
h . . . .
2(n) = Z h(k)s(n — k) +v(n) , ?) Using (6), an approprlatg source S|g_nal est.lmzﬂ.Qu) ~ Ks(n—9) _
p can be designed according to Bayesian estimation theory. On the basis

) o _of the available estimator, an error criteridh may be constructed
where h(n) denotes the system impulse response of finite duratigg.

Ly, s(n) denotes t_he source sequence afid) denotes an additive o def E[N?] = E[(u — B(u))?] . @)
(measurement) noise.
The transfer function of the structure (2) is found to be: Over the last 10 years, several studies have shown how to choose a
A4y ()2~ 4 b ()22 proper estimator on the basis of prior information on the deconvo-
W(2in) = 15 iy cos 600 =T 52 ()22 lution problem [10], [13], [15]. We hereafter denofe = E[F(u)],
b1(n) o c1(n) — 2d(n)p(r(n)) cosf(n) , where the local criterionf'(u) o (u — tanh(u))? according, e.g.,
ba(n) 2 d(n)p*(n) + cap(n) sinB(n) — c1(n)p(n) cosO(n) . © [13L . o _
(4) In order to optimize the Bussgang criterion (7), several algorithms
By equating the transfer function (4) to the desired transfer functige available in the literature that include the class of gradient-
(1), it is readily seen: based algorithms [9], [10] and fixed-point algorithms [12], [21]. On-
line blind deconvolution algorithms usually rely on the former kind
def . . . .
c1(n) = 2p(r(n))cosf(n) , of adaptation procedures. In the present contribution, a particular
c2(n) def p(r(n))<z 269((? , 5) Riemannian-gradient-type adaptation theory is exploited. The Rie-

mannian gradient-based adaptation equations for the parameters
and @ of the inherently-stable two-pole filter are:

def

din) =1,
$(n) = p(r(n))e”’™

oF
with 4> = —1. It is worth remarking that, with the above definitions [ ZEZ:[ B } = [ ggzg } —n(n)G ™ (r(n),0(n)) { 5 } ;
for the parameters;, co and d, the only free filter parameters to 96(n) @)
adapt arer andé. Abo(:thfunctionp(r), several choices are of coursey, . > 0. The sequencg(n) > 0 denotes the adaptation stepsize
possible as, e.gp(r) = tanh(r). and the positive-definite matrix-sequenGgr, 6) denotes the metric
tensor that describes the geometry of the Riemannian parameter
B. Bussgang-type adaptation theory space. The selection of the metric tensor is discussed in subsection II-

In order for a blind deconvolution problem to be consisten}i %Ohr:g/ \a”etc:] ttgei)tselectmn of appropriate stepsize schedules, which

the usual set. of considergd conditions. is: .1) The. ra.ndom SOUTCEis “worth mentioning that the Riemannian-gradient-descent-
sequence(n) is zero-mean independent identically-distributed (“D)t Re algorithm is closely related to both natural-gradient-based and

2) The random source sequence is symmetric around zero and ewton-type optimization theories. A discussion on the mutual

Gaussian. 3) The forward system has finite energy as does its inverse. . . . .
. d reldationships among these theories appeared recently in [14].
Under these hypotheses, the blind deconvolution theory ensuré L N .
n order to compute the derivatives of the criterion functibh

. - : i respect to filter coefficients, it is necessary to invoke an on-line
be recovered up to arbitrary scaling and time-delay, namely after

adaptation it should holdi(n) — Ks(n — n), with K € R and algorithm for statistical expectation estimation updating when a new

7 € Z (the group-delayi accounts for the total system-filter cascad sample becomes available. A classical method is stochastic low-pass

lag) [15]. It is worth noting that in the basic model of concern herg—',ltermg’ which for the pair of IIR filter parameters is:

no fractional lags are allowed. Bfi(i) = a% +(1— a)% °
In order to make the two-pole filter be able to perform blind system % _ O‘aeff_n +(1- Q)% )

deconvolution, it is necessary to design a proper adaptation procedure. ) ) o

To this end, we rely on the definition of a criteridh= F(r, §) and for n > 1 with a pair of initial values that may be safely assumed

of a Riemannian gradient-descent procedure to iteratively adapt #f#/al to zero. The constailt < « < 1 acts as a temporal

free filter parameters and 6. In the literature, known criteria for Smoothing coefficient. According to the state-space equations (2) and

blind deconvolution are entropy-based [4], Bussgang [10], likelihoo&? the parameterization (5), the required derivatives with respect to

based [6] and high-order statistics (HOS) [20], [21], [23]. In th@arameter read:

present paper, we chose the Bussgang-type criterion, whose salient OF OF _9u(n) dp(n)

. P or(n) = du(n) dp(n) dr(n) ? where:
features are briefly recalled below. Bussgang criterion was deemed to duln) de1 (n) dea(n) .
. N . . : . 3 = S éi(n) + Fav&(n) , with: (10)
be appropriate because it gives rise to failry simple adaptation terms aé’f?ﬂ) p(n) o 5}3) cos 20(n)
and to gain over author’s previous experience in the field [10], [13]. dp(n) 2cosf(n) , dp(n) — sinO(n)

During filter adaptation, the misadjustment of filter coefficientanajogously, for the derivatives with respect to paraméter

makes the filter output differ from the source signal. The misadjust- _ o
OF 9F Ou(n)

ment may be properly taken into account through the following filter B6(n] = Ba(m) o6(n) » Where:
output signal model: oo = Sl ey (n) + G200 6 (n) , with : 1)
dci(n) _ _92 .
_ -~ = —2p(r(n))sinf(n) and
'LL(?’L) - K(n)s(n 6(71)) +N(n) ’ (6) (’36('62((73) ___ 2sin20(n) cos 260(n)
o6(n) sin 6(n) sinf(n)tanf(n) °

where K(n) € R andd(n) € Z denote the instantaneous scaling
and lag, whileA/(n) denotesdeconvolution noisewhose suitable The computation of the derivati\%f depends on selection of function
representation is a zero-mean, white, Gaussian random procegs) and is straightforward. The computation of the derival%ﬁe is
uncorrelated with the source signal [15]. Such representation is vadil$o straightforward and may be found in [10].
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C. Selection of metric tensor Euclidean geometry
3

It is known from differential geometry that the concept of gradient
on a Riemannian manifold is defined up to a metric on the manifold
or an inner product (see, e.g., the tutorial [14]). In the present case,
the parameter manifol® is formed by the pairér, 6) € R x [0, 7).
The local metric structure of the parameter manifglds described
by the metric tensoiG(r,0) € R**2. If we denote by(d.,ds) a
basis of differential operators of the tangent spd¢eP at (r,0)
and by (-, -)r0 : TroP x T, 9P — R the bilinear, symmetric inner
product of two tangent vectors ét, 6), the metric tensor is:

251"

15¢ .

(Or,Or)ro0 (Or,00)r0

G(r,0) = (09, 0r)r,0 (09, 09)r0

(12)

If the parameter manifold is endowed with standard Euclidean
geometry, then the metric tensor is easily found toGde(r, 6) = RS
I,. Another possible geometry is the one induced by the coordinate | [~
changez = p(r) cosf, § = p(r)sin 6, where(z, ) belongs to the 168

unit-disk D. An Euclidean geometry foD, namely (9z,0z)z,5 = 1 2 ;
(9g,05)z,5 = 1 and(0z, 03)z,5 = 0 induces a Riemannian geometry
on P. In fact, the above coordinate change yields: Fig. 1. Examples of Euclidean and induced gradient structures. Top panels:
System zero far from the unit circle. Bottom panels: System zero close to the
8y = p'(r)(cos )85 + p'(r)(sin 0)dy (13) unit circle. (The vectors lengths are abs-log warped for graphical convenience.)

0p = —p(r)(sin )0z + p(r)(cos 0)dy ,

The computation of the inner products of the basis operalors  the inter-symbol interference (IS) figure [20], defined as:
may be carried out by exploiting the bilinearity of the inner product

2
and the orthonormality of the bag8;, 9;) and results in the metric ISI(n) def M -1, (15)
tensor: maxy {77 (n)}
Ga(r,0) = p"(r) 20 . (14) where T, (n) denotes the global system-filter impulse response se-
’ 0 p(r) guence at discrete-time, namely, the convolution of the impulse

ponses of the system and filter (2). Also, for the theoretical

formance analysis, it would be interesting to discuss the behavior
f the Bussgang indexX’ (7) as well as a signal restoration error,

namely the mean squared error (MSE) between the filter output signal

u(n) and the source signaln).

ere, we present the exact closed-form expression of the ISI

re and MSE index, as well as a reasonable approximation of the

This metric tensor appears as a generalization of the one previourisF
proposed by Amari and Douglas in [2]. It is worth noting that th
inverse of metric tensoG.(r,0) is ill-conditioned and becomes
singular for small as well as large values ofbecausep(r) ~ 0
for r ~ 0 and p’(r) ~ 0 for large values of-. A close look at (9)
reveals, for example, that for large values of the radius the rotat{er L

gradient is almost completely directed along theoordinate, thus Bussgang criterion, both as functions of the ISl figure. In particular,

large values c.)ﬁ" are discouraged (_|n oro!er to preven_t instability). 'Athe latter expression allows judging the suitability of blind Bussgang
known numerical way for overcoming this drawback is to replace tl?ﬁdex in the present context

. . 5 .
exact metric tensor wittGiz (r, 6) + €°Iz, wheree € R is a small The working hypothesis for the analysis to be carried out are:

co_r;fltant.l i £ th ) iat trv in adaptive fit .1) The forward filter to be cancelled is a two-tap FIR filter with
e selection of the most appropriate geometry in adaptive filtering - functionf (2) def | 9p, cos(6,)2~} + pgz—2. The zeros

depends on the application at hand. Two examples of Euclide +i0y therefore, by changing

) - ) : 81 function H(z) are located ap,e
(metric tensoiG+) and induced (metric tens@k.) gradient structures (2) . P . ; .
A o the value ofp, we can easily experiment with deconvolution of

are shown in Figure 1, where solid lines represent level-contours Qf . o
oo : . . . minimum-phase channelg{ < 1) as well as channels at the limit
criterion F'(r, 8), while arrows represent Riemannian gradient vector, L . .
of phase-minimality 4, close tol). 2) The source signal(n) is an

: -1 AF(r,0) . ; :
fieldsG™(r,0) . The first case is an example of system WIt|’iID sequence uniformly distributed withif-v/3, ++/3].

. . 9(r,0) -
its zero laying far away from the unit circle. The second case Is The two-pole filter structure in the present section allows writing
closed form the ISI index as function of the filter papevarying

an example of system with its zero close to the unit circle. In bol;l'p]
cases, the induced-gradient vector field looks more uniform than tI €he complex plane. The ISI figure (15) at timereads:

Euclidean-gradient vector field: This facilitates the selection of an

adaptation stepsizg(n) that is suitable far away from convergence ISI(n) = Pg s — 1+
as well as close to convergence. Also, the Euclidean gradient vector . '4’2)' .
field looks bent toward the system zero only in its vicinity, while the 2Re { (1_&(n)(r(f;(,g)))(l_ﬁg(Tgl))gl_w(n)‘g) } : (16)

induced vector field looks bent toward the cost function minimum

almost everywhere in the explored region of parameter space. The details of_thls calculatlon_ are give in Appendlx_ I. It is straight-
forward to verify that the residual interference vanishes to zero for

¢ = pgeti?s. Examples of the behavior of the ISI = I8l function

D. Theoretical performance analysis may be observed in Figure 2.

. _The Bussgang index at time computes as:
In general, the assessment of the effectiveness of the proposed fil- gang P

tering structure may be effected through a deconvolution performance F(n) = / pu(w;n)F(u)du (17)
index. In the present paper, as a performance index we considered R e ’
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System features: pg =0.45, eg =15 System features: pg =0.95, eg = T4+T12 qriterion F as a function of ISI for large ISI values
0.35 10
0.3
0.25 b=
ISl §10°
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~ ~ 5 o
g 2 2015 g
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- - 0.1 a
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0 107
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Fig. 3. Left: Approximated filter output distributiop,, (u) as a function
o of the ISl index, as given by (18). Right: Estimated relationship between the
Bussgang criterion (17) and the ISI index (valid for large values of ISI).

Fig. 2. ISl surface versus the parametgsse) for the experiments 1 and 2

on a two—zero/two—pole case. Filter poles during adaptation

1.2 15
1 1
where the functionp, (u;n) denotes the time-varying probability '; 08 £ o5 1
distribution of the filter output signak(n). Remarkably, with the g 06 % o
indicated uniformly-distributed source signal, it is possible to find ag o4 5
reasonable approximation of the exact functjer{u; n) in terms of ~ § o2 E-05 j
the 1SI(n) value only, namely: 0 -1
-0.2 -15
0 10 20 30 40 50 -1 0 1
potusn) ~ L [erf (%) i (ﬁ)] | ,
4V3 21S1(n) 21SI(n)
(18) 20 0

!
N

The details of the above computation are given in Appendix Il. o
For large values of ISI, which characterize the early stages of filterh_20
adaptation, each sample of filter's output signal computes as a linea#
combination of several source samples, therefore, by virtue of the’ -40
central limit theorem of statistics, its instantaneous distribution should _,
resemble a Gaussian one. Conversely, for small values of the ISI
index, which should characterize the latest stages of filter adaptation, ®% 10 200 00 400 100 200 300 400
the distribution of the filter output values should closely resemble Heration (100) Hteration (+100)
the distribution of the source signal, namely a uniform one. Thgq 4. Results of the experiment 1 on a two-zero/two-pole case. (The notation
adherence of the predicted distribution model (18) to the expect&ération (*100)' means, e.g., that the plots encomp#e x 100 iterations.
behavior may be verified on the left-hand panel of Figure 3.

On the basis of (18), the evaluation of the criterion function (17)
may be obtained via numerical integration. Alternatively, karge It is worth noting, however, that in the noiseless case, the M$E
enoughvalues of the ISI index only, a sensible approximation of thand 1S(n) indices are linearly related, nameWSE(n) = o2ISI(n),
output filter distribution is a zero-mean Gaussian of variamge= Whereo, denotes the variance of the source signal (which, in this

|
B | |
o ® o »

Bussgang criterion

|
i
N

|
i
N

(=}

ISI, while an adequate approximation of the functiBiiv) is: case, equal). The details of the above computation are given in
- Appendix Il1.
(’LL + 1) + 9 u < —1 s
Fluym=<{ 2 |y <1 (19) . .
9 — ) - -
(n—1)%+ % Cus 1. E. Computer simulation results on a two-zero/two-pole case

) ) i The learning parameters for the following experiments were set
which leads to the following approximate closed form of the Busgg. , — 0.8 n(n) = 0.0005 exp(—n/40000), 7(0) = atanh(0.9)

gang criterion as a function of the ISI index only: 9(0) ==
5
5 o 1 The first experiment was performed with the following datg:=
P~ ZISlerf 0.45, §, = Z. The results are shown in Figure 4. In the top-right
3 V2181 29, Ug = 5. g9 . p-rig

panel, the system zeros are denoted by open circles, while the final

5 J21I8I exp (_ 1 ) (31ISI? 4 ISI + 2) filter pole locations are denoteq by thg diamonds, which are very
9 21SI close to the target zeros. In this experiment, after convergence the
10 1 1 1 ISI index reaches-40 dB. In particular, therefore, the mean squared-
+ (j +ISI> 1- ﬁr (57 QISI) ’ (20)  error is of ordert0—* that is very good in practice (see e.g. [6],

) ) [16] for a reference.) An important observation is that the ISI curve
where symboll'(-,-) denotes the incomplete Gamma function [1]seems to oscillate unpleasantly around very low values: The reason
The right-hand panel of Figure 3 suggests a relationship of propgf sych oscillation may be recognized by observing the shape of the
tionality between Bussgang criterion and the ISI index. ISI surface versus the parametérs6) shown in the left-hand panel

The mean squared error index is defined as: of Figure 2: The surface exhibits a very peaked shape around the
MSE %f El(u— S)z] ‘ 1) optimal parameter-pair values, so that even a small deviation causes
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Filter poles during adaptation
1.2 15
1 1
.
3 06 > &
g E o £
g 04 El E
= E-05 s
G 0.2 0\ g
0 -1
-0.2 -15
0 10 20 30 40 50 -1 0 1
k Real Part
5 5
5 § 0 Fig. 7. Bussgang criterion surface versus the paramdjerg) for the
& -10 2 experiment 2 on a two-zero/two-pole case. (Star = True location of system
- 5 ] o o h
i o -5 zeros. Square = Estimated minimum of the criterion function.)
o -15 &
- g
I s 1o W
-25
-30 -15
0 100 200 300 400 0 100 200 300 400
Iteration (*100) Iteration (*100)

Fig. 5. Results of the experiment 2 on a two-zero/two-pole case.

Criterion value (log. scale)
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|
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Criterion value (log. scale)
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Fig. 8. Bussgang criterion surface versus the paraméterd for a system
with four zeros combined from experiment 1 and 2 of subsection II-E. (Stars =
True locations of system zeros. Square = Estimated minimum of the criterion
function.)

Fig. 6. Bussgang criterion surface versus the paraméigrg) for the
experiment 1 on a two-zero/two-pole case. (Star = True location of system

zeros. Square = Estimated minimum of the criterion function.) extension of the adaptation theory to the cascade of simple second-

order sections will require the development of a sort of gradient-
a large variation of the ISI value. back-propagation algorithm for on-line adaptation of all second-order

The second experiment was performed with the following datgections simultaneously.
pg = 0.95, 0, = T + 5. The results are shown in Figure 5. The
top-right panel shows that the final filter poles coincide to the targat On parallel versus sequential two-pole filters adaptation

zeros with good faith. In this experiment, after convergence the ISI . . . .
index is about-25 dB that is good enough in practice. Before developing a Bussgang-criterion grgdleqt bacl:k.-propagatlon
It is worth evaluating numerically the shape of the Bussga gonthm for thg multl-pole_state—space adaptlvg filter, it is necessary
surface, as a function of the variablpsand 6, for the two cases to provide a rationale for simultaneous adaptation of the cascade.
of study just discussed. Figure 6 shows the criteriBnsurface A Simpler choice would be to sequentially adapt individual second-
for the data of the first experiment while Figure 7 refers to th@der sections; that is, beginning to adapt a section when the preced-
second experiment. In both figures, the left-hand panel shows the % Section in the cascade has completed adaptation. This procedure
dimensional surfacé” = F(p, ) while the right-hand panel shows!S unfeasible, though, because the combined presence of system
the level-curves representation of the same surface. Also, the £&f0S and second-order-filters poles warps the adaptation criterion
indicates the coordinates of the true zefps, 6,) while the square Surface as seen by next filters in the cascade. Such phenomenon
denotes the numerically-estimated minimum of the funciitip, ¢). 1S €xemplified in the Figure 8, which shows the shape of the
In both cases, the criterion functions appear to be convex around Biéssgang surface — as a function of a section paramptensd 0
optimal solutions and the estimated minima lie very close to the exact" Presence of a system having the four zeros combined from
minima. This numerical analysis confirms the Bussgang criterid}€ WO experiments of subsection II-E. In the right-hand panel of
function as a good candidate for IIR-type blind deconvolution. Figure 8, the crosses indicate the locations of the system zeros,
while the square denote the minimum of the criteriBiip, 0). As
1. EXTENSION TO A MULTI-POLE FILTER it is readily seen, the presence of two zeros warps the criterion
) ) surface so that its minimum falls amidst the system zeros. This
On the basis of the adaptation theory developed for the secoRfynie experiment leads to the conclusion that sequential simple-
order section in Section Il, we now present an extension to & Mulfiper agaptation is not feasible in this context. In the case of parallel
pole filter, which is a cascade of second-order state-space filters. The htation, the adaptation criterion function accounts for the joint
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Adapted filter poles

behavior of the single filters simultaneously and is therefore adequate , 5 5

to the simultaneous adaptation of their parameters. ) R .
[
B. Stable multi-pole adaptive filter structure and adaptation O ° o
The number of second-order sections forming the cascade i§ ° &0
denoted byL and the filter coefficients for thé™ section are now £ o5 o -15
denoted agr*,0“)). The state-space equations for #i& section . © »
read:
fiz)(n—Fl ® cos g(f)(n) —Sine(g)(n) T 70.5R IoP 05 1 15 T |200‘ *310[?0 400 500
® — p(?” (’I'L)) ) ) ® eal Part teration (*100)
&7(n+1) sinf'*(n)  cos6'(n)
[ §z)(n) } [ 1 ] ® Fig. 9. Results of the experiment on a four-zero/four-pole case.
4 € (TZ) )
; >(n) O @ 15 Adapted filter poles s
uO(m) = [ 29O (m)) cos6O ) p(r0 (m)) 2200 |
ie)(n) (£) ' e '
X +z'(n) . . ° _
gé)(,n) ( ) 5 05 o _ 5
(22) E 0 & S-10
The necessary cascade-connection equations read: g o “ s
E, o .
©
() =z(n), 29n) =" Pn), 2<e<L. (23) » 20
The overall multi-pole filter output signal is clearly™’ (n). 15 25
. . . . . -15 -1 -05 0 0.5 1 15 0 100 200 300 400 500
The Bussgang criterion is defined on the basis of the overall Real Part lteration (100)

filter output signal, which should approximate the source signal aft'g,r 10. Results of th iment 2 ; /six-00l
adaptation and is now written g8 — E[F(u(L) )] 1g. . esults o e experimen on a Tour-zero/six-pole case.

Each second-order filter parameter-pair is adapted according to the

same gradien(t/—)based(gquation (8), where varialtés),0(n)) are  An analysis of the behavior of an adaptive filter in presence of
replaced by(p*”(n), 6" (n)). Gaussian noise(n) added to system output, according to model

For the required derivatives of the criterion function with respect {@®) was also performed. The noise level is expressed via the signal-
the parameters'” and6‘), the results are the same of (9), (10) ango-noise ratio (SNR) defined as:
(11), where Variableﬁp(n),ng),fl(n),é"g(n)) should be replaced Bls?
by (0 (n), 8 (n), £ (n), &" (n)). sng 1 Pl (25)

In order to complete the calculation, it is necessary to compute Elv?(n)]
the derivative-2%;;. We distinguish between two cases. In the caskhe average results (in terms of mean/variance of the ISI values
¢ = L, the computation is straightforward, as the quanfityis a recorded overl00 independent trials) are reported in the Table I.
function of the variableu'™ only. In the other cases, namely forAS long as the SNR level remains greater thAhdB the result

1 < ¢ < L, we may use the following chain rules: is completely satisfactory. With a SNR of less thaf dB the
oF oF ou(D) performance seem to degrade progressively. The very low values of
@ — m% ) 24 variances suggest the good stability of the adaptation process.
811.([’) _ Bu(l‘) 8u<L71) 8u(€+2) 81L(Z+1) ( )
Ou®) T au(L—=1) gy (L—=2) " g, (L+1)  gq (£)

i ] IV. CONCLUSION
¢ From the state-space equations (22) and the cascade-connection (Z:ﬂﬁe aim of the present paper was to present an investigation
it is straightforward to conclude that all the derivatives in the right-

hand side of the last equation in (24) equaTherefore, we conclude on a possible adaptive inherently-stable IIR filtering theory for

9F _  OF on-line blind signal deconvolution. The solution of choice was a
u®(n) — oulB(n)’ cascade of two-pole filters, realized in state-space form with a special
parameterization of the time-varying filter coefficients, in order to
C. Experiments with multi-pole IR filters ensure stability. Single experiments as well as collective experiments
In the following experiments, the filters coefficients were initialize®n noiseless/noisy FIR forward systems, exhibiting zeros very close to
asr® = atan(0.9) and 9 = LL-fl in order to cover the whole the unit circle, illustrated the good behavior of the developed theory.

upper half-disk.
The first set of experiments aimed at verifying the ability of the

Adapted filter poles

multipole filter to deconvolve a system with four and six zeros *® ®
located very close to the unit circle. For the four-zero system, the . ~ 0
order of the filter was chosen equal to fout & 2) as well as o °

h =4 . o |
six (L = 3), in order to test for the robustness of the adaptations o °

algorithm to model order mismatch. The results obtained in theZ °

four-zero/four-pole and the four-zero/six-pole case are depicted ] J N 15

Figures 9 and 10, respectively: In both situations, four adaptive filter d o

poles match the system zeros; in the second case, the redundant pair_1 e

of poles approaches the origin and give no contribution. The results 255 5 o o5 1 1s B o0 200 300 400 500
obtained in the siz-zero/six-pole case are depicted in Figure 11. All Real Part Hteration (*100)

the presented results seem satisfactory as the value reached byefhe;;  Results of the experiment 2 on a six-zero/six-pole case.
ISI index is below—20 dB.
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AVERAGE RESIDUAL INTER-SYMBOL INTERFERENCEISI, AS DEFINED IN Wiley 2003
(15), AND VARIANCE OVER 100 INDEPENDENT TRIALS VERSUS THE [10] S. RoRI, A contribution to (neuromorphic) blind deconvolution by
SIGNAL-TO-NOISE RATIO SNR,AS DEFINED IN (25), FOR A NOISY flexible approximated Bayesian estimati@®ignal Processing, Vol. 81,
SIX-ZERO SYSTEM No. 10, pp. 2131 — 2153, Oct. 2001
[11] S. FoRi, Blind intrinsically-stable 2-pole IIR filtering Electronics
[ SNR(dB) [ ISTAvE. (dB) [ ISIVAR. (dB) | Letters, Vol. 38, No. 23, pp. 1482 — 1483, Dec. 2002
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proposed in the present manuscript into a MIMO filter theory is under 1997
consideration. [17] D. KUNDUR AND D. HATZINAKOS, Blind image deconvolutignEEE
Signal Processing Magazine, Vol. 13 , No. 3, pp. 43 — 64, May 1996
[18] A.B. MARCHANT, Optical Engineering: A Technical Overvie#ddison
Wesley, 1996
The present version of the manuscript differs substantially from tfE9] P.A. REGALIA, Adaptive IIR Filtering in Signal Processing and Control
first version submitted: The added material was conceived thanks to New York: Marcel Dekker, 1995

the interest into the treated topic displayed by the Associate Editifi®] O SHALVI AND E. WEINSTEIN, New criteria for blind deconvolution
. . . of nonmimimum phase systems (channélE}E Trans. on Information
Prof. Paul Fiore, as well as the anonymous Reviewers. | would like  theory, vol. 7-36, No. 2, pp. 312 — 321, March 1990
to gratefully thank them for the thorough comments and detailggh] O. SHaLvi AND E. WEINSTEIN, Super-exponential methods for blind
suggestions. deconvolution IEEE Trans. on Information Theory, Vol. 39, No. 2, pp.
Part of the present manuscript was prepared while the author 504 - 519, 1993 ) ) .

isiting researcher at the Faculty of Information Technolo 22] S.K. SN AND C.H. CHEN, A comparison of deconvolution techniques
was a V'S'_ g - . - " - - » for the ultrasonic non-destructive evaluation of materidiSEE Trans.
Mathematics and Electrical Engineering of Norwegian University of  on Image Processing, Vol. 1, No. 1, pp 3 — 10, Jan. 1992
Science and Technology (Trondheim, Norway). The author wishes[#8] R.A. WiGGINS, Minimum entropy deconvolutipiGeoexploration, Vol.
gratefully thank Prof. Elena Celledoni for making this fruitful visit 16, pp. 21 - 35, 1978

be possible and for pointing out reference [2].

ACKNOWLEDGMENTS

The present version of the manuscript was prepared while the APPENDIXI
author was a short-term visitor of the Mathematical Neuroscien@erPENDIXA: CLOSED FORM EXPRESSION OF THESI INDEX FOR
Laboratory of Brain Science Institute (BSI) at RIKEN (Wako-shi, THE TWO-ZERO/TWO-POLE CASE

Saitama, Japan) during July-September 2005: The author wishes % order to derive the closed form expression of the ISI index
gratefully thank the BSI director, Prof. Shun-ichi Amari, and all the,. 4, two-zero/two-pole in the subsection I1-E

. - let us first recall
laboratory members for the warm and friendly hospitality.

the relationship between the filter pole and the overall causal
impulse responsel,(n) at discrete-timen, which is Tx(n) =
REFERENCES Z~YH(2)W(z;n)}(k), where Z{-}(-) denotes the Z-transform
[1] M. ABrAmMOWITZ AND C.A. STEGUN (Eds.), “Gamma (factorial) operator. From this relationship it is possible to compute the ISl figure
m”ﬁi?lr(‘j"bggg ;'f”ﬁ’gﬁéﬁigg;‘“&igﬁgﬁgOE}Ea?grf;ET;sBérgngse-g in closed form. In fact, by reversing it through the Fourier transform
Mathematical Tables,"d printing, New York: Dover, pages 255p— 2’58r51perat0|:7-'{~}(-), we haver{T}(w; n) = H(e™)W (e™;n). Then,
and 260 — 263, 1972 the Parseval theorem allows writing:

[2] S.-. AMARI AND S.C. DouGLAS, Why natural gradient ?Proc. of too o

Intl. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), Vol. 2, pp. 2 1 iw w. N2

1213 - 1216, Seattle (WA, USA), May 12-15, 1998 ZTk (n) =5 |H(e™)W(esn)|["dw . (26)
[3] C.W. BARNES AND A.T. FAM, Minimum norm recursive digital filters k=0 -

that are free of overflow limit cycle$EEE Trans. on Signal Processing, Thic i ;
Vol. 47, No. 9, pp. 2561 — 2567, Sept. 1999 This integral may be computed by the help of the residue theorem

[4] A.J. BELL AND T.J. SEINOWSK], An information maximisation ap- applied to the following equivalent line-integral over the unit-circle
proach to blind separation and blind deconvolutiddeural Computa- 9D in the complex plane:
tion, Vol. 7, No. 6, pp. 1129 — 1159, 1995

[5] A. BENVEI_\II_STE, M. GOURSAT, AND G RU(_;ET, Robust idg—:‘ntification_ L H(z)H(z_l)W(z;n)W(z_l;n)@ ) (27)
of a nonminimum phase system: Blind adjustment of a linear equalizer 271 Jop z
in data communicationEEE Trans. on Automatic Control, Vol. AC-25, . . . .
No. 3, pp. 385 — 399, June 1980 The computation of the residues can be carried out by noting that

[6] A.M. BRONSTEIN, M.M. BRONSTEIN AND M. ZIBULEVSKY, Relative the integrand, let us namei{z; n), has three single poles inside the

optimization for blind deconvolutiQnEEE Trans. on Signal Processing, ynit-disk D, namely inz = ¢, z = ¢* andz = 0. Residues are:
Vol. 53, No. 6, pp. 2018 — 2026, June 2005

[7] P. CampoLuccCl AND F. PAZzA, Intrinsic stability-control method for Ry def Res[I(z),0] = log|?
recursive filters and neural network$EEE Trans. on Circuits and ’ le? > o .
Systems — Part II, Vol. 47, No. 8, pp. 797 — 802, Aug. 2000 R, &f Res[I(z), ] = (A-¢g0 )51—_4’1g¢’ >(12—¢9¢)gl—4’g¢> 7
[8] C.-Y.CHI, C.-Y. CHEN, C.-Y. FENG AND C.-H. CHEN, Batch process- def (1=~ (A=19]%)(1-9%)
ing algorithms for blind equalization using higher-order statisfitSEE Rs = Res[I(z),¢"] = R5 .

Signal Processing Magazine, Vol. 20, No. 1, pp. 25 — 49, January 2003 (28)



8 DRAFT OF PAPER APPEARED ON THE IEEE TRANS. ON SIGNAL PROCESSING

Also, the initial-value theorem for the Z-transform may be used to APPENDIXIII
computemaxy, T2 (n) = Tg(n). Its application gives: APPENDIX C: RELATIONSHIP BETWEENIS| AND MSE INDICES
To(n) = lLim H(z)W(zn)=1. (29) In the noisele;s case, i.e., Whe@) =0 in.th.e system output
2] —+o0 model (3), the difference(n) — s(n) in the definition of MSE (21)

It is worth noting that, in the two-zero two-pole case of concerfi@y be written as:

here, the total impulse response has the maximum value at lag zero, i
therefore at perfect filter convergence the total delay of the system- u(n) — s(n) = ZTk (n)s(n —k) , (34)
filter cascade is null. k=1
whereT}(n) denotes again the global system-filter cascade impulse
APPENDIX I response. On the basis of this relationship, the MSE index recasts as:
APPENDIX B: APPROXIMATION OFp,, (u;n) AS A FUNCTION OF oo oo
THE ISI FIGURE MSE(n) = Y Ti(n)Th(n)Els(n — k)s(n — h)] . (35)
The forward system to deconvolve is FIR, but the inverse adaptive k=1 h=1

filter is IIR, thus their cascade is IIR and the impulse response A§ the source sequence is, by hypothesis, IID and zero-mean, its
the cascade systemT5. The filter output signal is an infinitely-long autocorrelationE[s(n — k)s(n — h)] is zero fork # h and equals
linear combination of the samples of the source sequence, which gged;f E[s?] for k = h.

IID random variables, with combining coefficient$: In the noisy case, similar calculations show that the discussed
oo relationship becomes:
u(n) = kz_;) Te(m)s(n— k) - (30) MSE(n) = 021SI(n) + 02(n) , (36)

Let us recall the definition of the first-kind characteristic func‘-"’he“da ‘gg(”) denotes the filtered additive system noise sequence
tion of a random variabler, that is @, (w) % F{pa(x)}(w) = () = D02, Te(n)v(n — k).
E.le”™"], wherew € R. A useful property of the characteristic
function is that®.., (w) = ®,(cw) for everyc € R.
According to the known combination rules of probability density
functions for linear combination of random variables and to the dual-
ity theorem of Fourier transform, the filter output signal distribution
pu(u;m) may be written as:

(win) = L ( u > (u)
Pt = T T P \ Ty ) * P \ o)

Ps (TQ(H)) * Ds (W) *

oo
= FUd,(w P (T (n)w) Hu) , 31
(@ )kll (T (m)w)} (W) (31) Simone Fiori was born in Rimini (Italy) in June

- 1971. He received the Italian Laurea (Dr.Engm
where symbol+’' denotes convolution. In order to develop the above laude in electronics engineering in July 1996 from
calculations, we hypothesized that, at any timehe global system- PLACE ahe Unl\_/er5||ty th /I°~n00f)a (It_aly),( ?nd.tt?ﬁ Ph)-D_-
: H H egree In electrical engineering (Circul eory) In
flltgr Casqade Impu!se re;ponse is such ) 7&.0 for all k_' As PHOTO March 2000 from the University of Bologna (Italy).
it is readily recog.nlzed, if som@k =0, the relative terms in the HERE In November 2000 he has been appointed assistant
above equation disappear. It is worth noting that the statistics of the professor of circuit theory at the University of Pe-
random signaki(n) are time-varying and therefore the probability rugia (ltaly). His research interests include unsuper-
density function depends on time. vised learning theory for artificial neural networks,

It ibl find itabl . d ion f linear and non-linear adaptive discrete-time filter
tis _p_oss' € 'to ind a suita y'apprOXIr-nat'e expression .Or trIﬁeory, vision and image processing by neural networks, continuous-time and
probability densityp,, (u; n) for a uniformly-distributed source signal discrete-time circuits for stochastic information processing. He is author of
with variancegf = 1. In this case, the characteristic function ofmore than 100 refereed journal and conference papers on these topics. Dr.
the source signal has expressi®n(w) = sin(vBw) A reasonable FiOf has been the recipient of the 2001 “E.R. Caianiello Award” for the best

. . - w o .Ph.D. dissertation in the artificial neural network field and is currently serving
approximation of the above characteristic function is the Gaussigl associate Editor of Neurocomputing journal,
kernel exp —“’72 , therefore the infinite product in the expression

(31) may be approximated by:

H O, (Trw)}(u) = exp (u; Z Tf) = exp (U; ISI) .
k=1

k=1
(32)
The inverse transform of a Gaussian kernel is again a Gaussian kernel,
therefore:

1 u?
pu(u;n) = ps(u) * [QWISI(n) exp (—mm>1 . (33)

The above convolution may be computed easily and leads to (18).




