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Blind Adaptation of Stable Discrete-Time IIR Filters in
State-Space Form

Simone Fiori

Abstract— Blind deconvolution consists of extracting a source sequence
and impulse response of a linear system from their convolution. In
presence of system zeros close to the unit circle, which give rise to
very long impulse responses, IIR adaptive structures are of use, whose
adaptation should be carefully designed in order to guarantee stability.
In this paper, we propose a blind-type discrete-time IIR adaptive filter
structure realized in state-space form that, with a suitable parameteri-
zation of its coefficients, remains stable. The theory is first developed for
a two-pole filter, whose numerical behavior is investigated via computer-
based experiments. The proposed structure/adaptation theory is then
extended to a multi-pole structure realized as a cascade of two-pole
filters. Computer-based experiments are proposed and discussed, which
aim at illustrating the behavior of the filter cascade on several cases of
study. The numerical results obtained show the proposed filters remain
stable during adaptation and provide satisfactory deconvolution results.

Index Terms— Blind system deconvolution; Bussgang-type deconvolu-
tion; Discrete-time adaptive filters; Inherently-stable IIR filters; State-
space form.

I. I NTRODUCTION

BLIND system deconvolution (also known as blind signal restora-
tion) is a challenging problem, which concerns designing the

inverse of an unknown linear system driven by an unknown source
signal while observing only its response signal [8], [9]. The user
interest may be upon the forward system impulse response or on
the source signal distorted by the forward linear system. Many
engineering applications rely on blind deconvolution, such as channel
equalization in telecommunication systems [20], blind image de-
blurring in digital image restoration [17], non-destructive material
evaluation by ultrasonic inspection [22], remote sensing in geoscience
[10], [23] and data storage and transmission [5], [18].

The majority of the available blind deconvolution techniques rely
on finite-length impulse response (FIR) adaptive filters with a small
number of taps [8], [9]. These structures are appropriate for mitigating
the effects of systems whose zeros lie sufficiently far from the unit
circle. In fact, the presence of zeros close to the unit circle would
require very long inverse FIR filters and thus the use of infinite-
length impulse response (IIR) filters would be beneficial in this case.
However, IIR adaptive filters trained to have poles close to the unit
circle may easily become unstable, therefore one of the research
topics currently under investigation in adaptive IIR filtering is the
challenging question of the design ofinherently-stablefilters. In the
supervised adaptation field (as, e.g., in system identification) some
convenient solutions have been developed in the recent past [7], [19].
A new solution, suited to on-line blind adaptation, is the subject of
the present contribution.

This paper is organized as follows. Section II focuses on advancing
the idea presented in the preliminary report [11] by introducing a
different filter realization as well as new parameterization for the filter
coefficients and by invoking a different adaptation criterion based
on ‘Bussgang’ theory. A closed form expression for the total inter-
symbol interference (ISI), as a function of filter coefficients, and an
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approximate closed-form expression for the Bussgang-type learning
criterion, as a function of the ISI index, are provided. Numerical
results illustrate the inversion of a two-zero system in a challenging
case-study. Section III presents the extension of the second-order-
section adaptation equations to the case of a cascade of an arbitrary
number of two-pole filters. Such extension requires the development
of a back-propagation-like rule for the simultaneous adaptation of
the coefficients of all the filters in the cascade. The behavior of
the proposed adaptation filter theory is investigated numerically via
computer-based experiments. Finally, concluding thoughts are given
in Section IV.

II. F ILTER STRUCTURE AND ADAPTATION THEORY FOR A

SECOND-ORDER SECTION

We now illustrate the relevant equations related to the inherently-
stable two-pole filtering structure, by briefly recalling the adopted
blind-type adaptation theory. Additionally, we present an analytical
study of the features of the devised algorithm in the two-pole case.
The present section also illustrates the numerical behavior of the two-
pole filter on some blind-deconvolution cases.

A. Stable two-pole adaptive filter structure: Description and proper-
ties

The adaptive structure investigated in the present section is a
second-order IIR section, having complex poles only, whose transfer
function is given by:

W (z; n) =
1

(1− φ(n)z−1)(1− φ∗(n)z−1)
, (1)

whereφ andφ∗ are the complex-conjugate poles of the adaptive IIR
filter, which depend on the discrete-time indexn ∈ Z.

The classical stability conditions for static (time-invariant) linear
filters are not sufficient – in general – to ensure the stability
of a dynamical filter. The selection of an adequate time-domain
implementation of the adaptive filter (1) is a key issue in order
for the time-varying filtering structure to remain stable over time. A
realization that enjoys this feature and exhibits favorable numerical
properties [3], [19] is based on state-space equations. A two-pole-
filter input-state-output representation is given by:

[
ξ1(n + 1)
ξ2(n + 1)

]
= ρ(r(n))

[
cos θ(n) − sin θ(n)
sin θ(n) cos θ(n)

]
×

[
ξ1(n)
ξ2(n)

]
+

[
1
0

]
x(n) ,

u(n) =
[

c1(n) c2(n)
] [

ξ1(n)
ξ2(n)

]
+ d(n)x(n) .

(2)

In the above equations,x(n) ∈ R and u(n) ∈ R denote the filter
input and output sequence, respectively, whilec1(n) ∈ R, c2(n) ∈ R
andd(n) ∈ R, θ(n) ∈ [0, π) andr(n) ∈ R are free parameters that
actually describe the filter features, whileρ(·) : R → (−1, +1).
Also, the quantitiesξ1(n) ∈ R andξ2(n) ∈ R denote the filter state
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variables. The filter input sequence is driven by the forward system
output sequence, defined as:

x(n) =

Lh∑
k=0

h(k)s(n− k) + v(n) , (3)

whereh(n) denotes the system impulse response of finite duration
Lh, s(n) denotes the source sequence andv(n) denotes an additive
(measurement) noise.

The transfer function of the structure (2) is found to be:

W (z; n) = d(n)+b1(n)z−1+b2(n)z−2

1−2ρ(n) cos θ(n)z−1+ρ2(n)z−2 ,

b1(n)
def
= c1(n)− 2d(n)ρ(r(n)) cos θ(n) ,

b2(n)
def
= d(n)ρ2(n) + c2ρ(n) sin θ(n)− c1(n)ρ(n) cos θ(n) .

(4)
By equating the transfer function (4) to the desired transfer function
(1), it is readily seen:

c1(n)
def
= 2ρ(r(n)) cos θ(n) ,

c2(n)
def
= ρ(r(n)) cos 2θ(n)

sin θ(n)
,

d(n)
def
= 1 ,

φ(n) = ρ(r(n))eiθ(n) ,

(5)

with i2 = −1. It is worth remarking that, with the above definitions
for the parametersc1, c2 and d, the only free filter parameters to
adapt arer andθ. About functionρ(r), several choices are of course

possible as, e.g.,ρ(r)
def
= tanh(r).

B. Bussgang-type adaptation theory

In order for a blind deconvolution problem to be consistent,
the usual set of considered conditions is: 1) The random source
sequences(n) is zero-mean independent identically-distributed (IID).
2) The random source sequence is symmetric around zero and non-
Gaussian. 3) The forward system has finite energy as does its inverse.
Under these hypotheses, the blind deconvolution theory ensures
that deconvolution is feasible, and the random source stream may
be recovered up to arbitrary scaling and time-delay, namely after
adaptation it should holdu(n) = Ks(n − n̄), with K ∈ R and
n̄ ∈ Z (the group-delaȳn accounts for the total system-filter cascade
lag) [15]. It is worth noting that in the basic model of concern here,
no fractional lags are allowed.

In order to make the two-pole filter be able to perform blind system
deconvolution, it is necessary to design a proper adaptation procedure.
To this end, we rely on the definition of a criterionF = F (r, θ) and
of a Riemannian gradient-descent procedure to iteratively adapt the
free filter parametersr and θ. In the literature, known criteria for
blind deconvolution are entropy-based [4], Bussgang [10], likelihood-
based [6] and high-order statistics (HOS) [20], [21], [23]. In the
present paper, we chose the Bussgang-type criterion, whose salient
features are briefly recalled below. Bussgang criterion was deemed to
be appropriate because it gives rise to failry simple adaptation terms
and to gain over author’s previous experience in the field [10], [13].

During filter adaptation, the misadjustment of filter coefficients
makes the filter output differ from the source signal. The misadjust-
ment may be properly taken into account through the following filter
output signal model:

u(n) = K(n)s(n− δ(n)) +N (n) , (6)

whereK(n) ∈ R and δ(n) ∈ Z denote the instantaneous scaling
and lag, whileN (n) denotesdeconvolution noise, whose suitable
representation is a zero-mean, white, Gaussian random process,
uncorrelated with the source signal [15]. Such representation is valid

under the assumption that the system-filter-cascade total impulse
response is sufficiently long, which clearly holds for a IIR filter at the
beginning of adaptation stage (please also see details in Appendix II).
Using (6), an appropriate source signal estimatorB(u) ≈ Ks(n−δ)
can be designed according to Bayesian estimation theory. On the basis
of the available estimator, an error criterionF may be constructed
as:

2F
def
= E[N 2] = E[(u−B(u))2] . (7)

Over the last 10 years, several studies have shown how to choose a
proper estimator on the basis of prior information on the deconvo-
lution problem [10], [13], [15]. We hereafter denoteF = E[F̄ (u)],

where the local criterion̄F (u)
def
= (u − tanh(u))2 according, e.g.,

to [13].
In order to optimize the Bussgang criterion (7), several algorithms

are available in the literature that include the class of gradient-
based algorithms [9], [10] and fixed-point algorithms [12], [21]. On-
line blind deconvolution algorithms usually rely on the former kind
of adaptation procedures. In the present contribution, a particular
Riemannian-gradient-type adaptation theory is exploited. The Rie-
mannian gradient-based adaptation equations for the parametersr
andθ of the inherently-stable two-pole filter are:
[

r(n + 1)
θ(n + 1)

]
=

[
r(n)
θ(n)

]
− η(n)G−1(r(n), θ(n))

[
∂F

∂r(n)
∂F

∂θ(n)

]
,

(8)
for n ≥ 0. The sequenceη(n) > 0 denotes the adaptation stepsize
and the positive-definite matrix-sequenceG(r, θ) denotes the metric
tensor that describes the geometry of the Riemannian parameter
space. The selection of the metric tensor is discussed in subsection II-
C along with the selection of appropriate stepsize schedules, which
is tightly tied to it.

It is worth mentioning that the Riemannian-gradient-descent-
type algorithm is closely related to both natural-gradient-based and
Newton-type optimization theories. A discussion on the mutual
relationships among these theories appeared recently in [14].

In order to compute the derivatives of the criterion functionF
with respect to filter coefficients, it is necessary to invoke an on-line
algorithm for statistical expectation estimation updating when a new
sample becomes available. A classical method is stochastic low-pass
filtering, which for the pair of IIR filter parameters is:

∂F
∂r(n)

= α ∂F
∂r(n−1)

+ (1− α) ∂F̄
∂r(n)

,
∂F

∂θ(n)
= α ∂F

∂θ(n−1)
+ (1− α) ∂F̄

∂θ(n)
,

(9)

for n ≥ 1 with a pair of initial values that may be safely assumed
equal to zero. The constant0 < α < 1 acts as a temporal
smoothing coefficient. According to the state-space equations (2) and
to the parameterization (5), the required derivatives with respect to
parameterr read:

∂F̄
∂r(n)

= ∂F̄
∂u(n)

∂u(n)
∂ρ(n)

dρ(n)
dr(n)

, where:
∂u(n)
∂ρ(n)

= ∂c1(n)
∂ρ(n)

ξ1(n) + ∂c2(n)
∂ρ(n)

ξ2(n) , with :
∂c1(n)
∂ρ(n)

= 2 cos θ(n) , ∂c1(n)
∂ρ(n)

= cos 2θ(n)
sin θ(n)

.

(10)

Analogously, for the derivatives with respect to parameterθ:

∂F̄
∂θ(n)

= ∂F̄
∂u(n)

∂u(n)
∂θ(n)

, where:
∂u(n)
∂θ(n)

= ∂c1(n)
∂θ(n)

ξ1(n) + ∂c2(n)
∂θ(n)

ξ2(n) , with :
∂c1(n)
∂θ(n)

= −2ρ(r(n)) sin θ(n) and
∂c2(n)
∂θ(n)

= − 2 sin 2θ(n)
sin θ(n)

− cos 2θ(n)
sin θ(n) tan θ(n)

.

(11)

The computation of the derivativedρ
dr

depends on selection of function
ρ(·) and is straightforward. The computation of the derivative∂F̄

∂u
is

also straightforward and may be found in [10].



FIORI: BLIND ADAPTATION OF STABLE DISCRETE-TIME IIR FILTERS 3

C. Selection of metric tensor

It is known from differential geometry that the concept of gradient
on a Riemannian manifold is defined up to a metric on the manifold
or an inner product (see, e.g., the tutorial [14]). In the present case,
the parameter manifoldP is formed by the pairs(r, θ) ∈ R× [0, π).
The local metric structure of the parameter manifoldP is described
by the metric tensorG(r, θ) ∈ R2×2. If we denote by(∂r, ∂θ) a
basis of differential operators of the tangent spaceTr,θP at (r, θ)
and by〈·, ·〉r,θ : Tr,θP × Tr,θP → R the bilinear, symmetric inner
product of two tangent vectors at(r, θ), the metric tensor is:

G(r, θ) =

[
〈∂r, ∂r〉r,θ 〈∂r, ∂θ〉r,θ

〈∂θ, ∂r〉r,θ 〈∂θ, ∂θ〉r,θ

]
. (12)

If the parameter manifoldP is endowed with standard Euclidean
geometry, then the metric tensor is easily found to beG1(r, θ) =
I2. Another possible geometry is the one induced by the coordinate
changex̃ = ρ(r) cos θ, ỹ = ρ(r) sin θ, where(x̃, ỹ) belongs to the
unit-disk D. An Euclidean geometry forD, namely〈∂x̃, ∂x̃〉x̃,ỹ =
〈∂ỹ, ∂ỹ〉x̃,ỹ = 1 and〈∂x̃, ∂ỹ〉x̃,ỹ = 0 induces a Riemannian geometry
on P. In fact, the above coordinate change yields:

∂r = ρ′(r)(cos θ)∂x̃ + ρ′(r)(sin θ)∂ỹ ,
∂θ = −ρ(r)(sin θ)∂x̃ + ρ(r)(cos θ)∂ỹ ,

(13)

The computation of the inner products of the basis operators∂r, ∂θ

may be carried out by exploiting the bilinearity of the inner product
and the orthonormality of the basis(∂x̃, ∂ỹ) and results in the metric
tensor:

G2(r, θ) =

[
ρ′2(r) 0

0 ρ2(r)

]
. (14)

This metric tensor appears as a generalization of the one previously
proposed by Amari and Douglas in [2]. It is worth noting that the
inverse of metric tensorG2(r, θ) is ill-conditioned and becomes
singular for small as well as large values ofr becauseρ(r) ≈ 0
for r ≈ 0 and ρ′(r) ≈ 0 for large values ofr. A close look at (9)
reveals, for example, that for large values of the radius the rotated
gradient is almost completely directed along ther-coordinate, thus
large values ofr are discouraged (in order to prevent instability). A
known numerical way for overcoming this drawback is to replace the
exact metric tensor withG2(r, θ) + ε2I2, whereε ∈ R is a small
constant.

The selection of the most appropriate geometry in adaptive filtering
depends on the application at hand. Two examples of Euclidean
(metric tensorG1) and induced (metric tensorG2) gradient structures
are shown in Figure 1, where solid lines represent level-contours of
criterionF (r, θ), while arrows represent Riemannian gradient vector
fieldsG−1(r, θ) ∂F (r,θ)

∂(r,θ)
. The first case is an example of system with

its zero laying far away from the unit circle. The second case is
an example of system with its zero close to the unit circle. In both
cases, the induced-gradient vector field looks more uniform than the
Euclidean-gradient vector field: This facilitates the selection of an
adaptation stepsizeη(n) that is suitable far away from convergence
as well as close to convergence. Also, the Euclidean gradient vector
field looks bent toward the system zero only in its vicinity, while the
induced vector field looks bent toward the cost function minimum
almost everywhere in the explored region of parameter space.

D. Theoretical performance analysis

In general, the assessment of the effectiveness of the proposed fil-
tering structure may be effected through a deconvolution performance
index. In the present paper, as a performance index we considered
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Fig. 1. Examples of Euclidean and induced gradient structures. Top panels:
System zero far from the unit circle. Bottom panels: System zero close to the
unit circle. (The vectors lengths are abs-log warped for graphical convenience.)

the inter-symbol interference (ISI) figure [20], defined as:

ISI(n)
def
=

∑
k

T 2
k (n)

maxk{T 2
k (n)} − 1 , (15)

whereTk(n) denotes the global system-filter impulse response se-
quence at discrete-timen, namely, the convolution of the impulse
responses of the system and filter (2). Also, for the theoretical
performance analysis, it would be interesting to discuss the behavior
of the Bussgang indexF (7) as well as a signal restoration error,
namely the mean squared error (MSE) between the filter output signal
u(n) and the source signals(n).

Here, we present the exact closed-form expression of the ISI
figure and MSE index, as well as a reasonable approximation of the
Bussgang criterion, both as functions of the ISI figure. In particular,
the latter expression allows judging the suitability of blind Bussgang
index in the present context.

The working hypothesis for the analysis to be carried out are:
1) The forward filter to be cancelled is a two-tap FIR filter with
transfer functionH(z)

def
= 1 − 2ρg cos(θg)z−1 + ρ2

gz−2. The zeros
of function H(z) are located atρge±iθg , therefore, by changing
the value ofρg we can easily experiment with deconvolution of
minimum-phase channels (ρg < 1) as well as channels at the limit
of phase-minimality (ρg close to1). 2) The source signals(n) is an
IID sequence uniformly distributed within[−√3, +

√
3].

The two-pole filter structure in the present section allows writing
in closed form the ISI index as function of the filter poleφ varying
in the complex plane. The ISI figure (15) at timen reads:

ISI(n) =
ρ2

g

|φ(n)|2 − 1 +

2Re
{

H(φ(n))H(φ−1(n))

(1−φ∗(n)φ−1(n))(1−φ2(n))(1−|φ(n)|2)

}
. (16)

The details of this calculation are give in Appendix I. It is straight-
forward to verify that the residual interference vanishes to zero for
φ = ρge±iθg . Examples of the behavior of the ISI = ISI(φ) function
may be observed in Figure 2.

The Bussgang index at timen computes as:

F (n) =

∫

R
pu(u; n)F̄ (u)du , (17)
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Fig. 2. ISI surface versus the parameters(ρ, θ) for the experiments 1 and 2
on a two-zero/two-pole case.

where the functionpu(u; n) denotes the time-varying probability
distribution of the filter output signalu(n). Remarkably, with the
indicated uniformly-distributed source signal, it is possible to find a
reasonable approximation of the exact functionpu(u; n) in terms of
the ISI(n) value only, namely:

pu(u; n) ≈ 1

4
√

3

[
erf

(
u +

√
3√

2 ISI(n)

)
− erf

(
u−√3√
2 ISI(n)

)]
.

(18)
The details of the above computation are given in Appendix II.
For large values of ISI, which characterize the early stages of filter
adaptation, each sample of filter’s output signal computes as a linear
combination of several source samples, therefore, by virtue of the
central limit theorem of statistics, its instantaneous distribution should
resemble a Gaussian one. Conversely, for small values of the ISI
index, which should characterize the latest stages of filter adaptation,
the distribution of the filter output values should closely resemble
the distribution of the source signal, namely a uniform one. The
adherence of the predicted distribution model (18) to the expected
behavior may be verified on the left-hand panel of Figure 3.

On the basis of (18), the evaluation of the criterion function (17)
may be obtained via numerical integration. Alternatively, forlarge
enoughvalues of the ISI index only, a sensible approximation of the
output filter distribution is a zero-mean Gaussian of varianceσ2

u =
ISI, while an adequate approximation of the functionF̄ (u) is:

F̄ (u) ≈





(u + 1)2 + 1
9

, u < −1 ,
u6

9
, |u| ≤ 1 ,

(u− 1)2 + 1
9

, u > +1 ,

(19)

which leads to the following approximate closed form of the Buss-
gang criterion as a function of the ISI index only:

F ≈ 5

3
ISI3erf

(
1√
2 ISI

)

−5

9

√
2 ISI

π
exp

(
− 1

2 ISI

)
(3 ISI2 + ISI + 2)

+
(

10

9
+ ISI

)[
1− 1√

π
Γ

(
1

2
,

1

2 ISI

)]
, (20)

where symbolΓ(·, ·) denotes the incomplete Gamma function [1].
The right-hand panel of Figure 3 suggests a relationship of propor-
tionality between Bussgang criterion and the ISI index.

The mean squared error index is defined as:

MSE
def
= E[(u− s)2] . (21)
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Fig. 3. Left: Approximated filter output distributionpu(u) as a function
of the ISI index, as given by (18). Right: Estimated relationship between the
Bussgang criterion (17) and the ISI index (valid for large values of ISI).
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Fig. 4. Results of the experiment 1 on a two-zero/two-pole case. (The notation
‘iteration (*100)’ means, e.g., that the plots encompass400× 100 iterations.

It is worth noting, however, that in the noiseless case, the MSE(n)
and ISI(n) indices are linearly related, namelyMSE(n) = σ2

sISI(n),
whereσs denotes the variance of the source signal (which, in this
case, equal1). The details of the above computation are given in
Appendix III.

E. Computer simulation results on a two-zero/two-pole case

The learning parameters for the following experiments were set
to: α = 0.8, η(n) = 0.0005 exp(−n/40000), r(0) = atanh(0.9),
θ(0) = π

2
.

The first experiment was performed with the following data:ρg =
0.45, θg = π

5
. The results are shown in Figure 4. In the top-right

panel, the system zeros are denoted by open circles, while the final
filter pole locations are denoted by the diamonds, which are very
close to the target zeros. In this experiment, after convergence the
ISI index reaches−40 dB. In particular, therefore, the mean squared-
error is of order10−4 that is very good in practice (see e.g. [6],
[16] for a reference.) An important observation is that the ISI curve
seems to oscillate unpleasantly around very low values: The reason
of such oscillation may be recognized by observing the shape of the
ISI surface versus the parameters(ρ, θ) shown in the left-hand panel
of Figure 2: The surface exhibits a very peaked shape around the
optimal parameter-pair values, so that even a small deviation causes
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Fig. 5. Results of the experiment 2 on a two-zero/two-pole case.
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Fig. 6. Bussgang criterion surface versus the parameters(ρ, θ) for the
experiment 1 on a two-zero/two-pole case. (Star = True location of system
zeros. Square = Estimated minimum of the criterion function.)

a large variation of the ISI value.
The second experiment was performed with the following data:

ρg = 0.95, θg = π
4

+ π
2

. The results are shown in Figure 5. The
top-right panel shows that the final filter poles coincide to the target
zeros with good faith. In this experiment, after convergence the ISI
index is about−25 dB that is good enough in practice.

It is worth evaluating numerically the shape of the Bussgang
surface, as a function of the variablesρ and θ, for the two cases
of study just discussed. Figure 6 shows the criterionF surface
for the data of the first experiment while Figure 7 refers to the
second experiment. In both figures, the left-hand panel shows the tri-
dimensional surfaceF = F (ρ, θ) while the right-hand panel shows
the level-curves representation of the same surface. Also, the star
indicates the coordinates of the true zeros(ρg, θg) while the square
denotes the numerically-estimated minimum of the functionF (ρ, θ).
In both cases, the criterion functions appear to be convex around the
optimal solutions and the estimated minima lie very close to the exact
minima. This numerical analysis confirms the Bussgang criterion
function as a good candidate for IIR-type blind deconvolution.

III. E XTENSION TO A MULTI-POLE FILTER

On the basis of the adaptation theory developed for the second-
order section in Section II, we now present an extension to a multi-
pole filter, which is a cascade of second-order state-space filters. The
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Fig. 7. Bussgang criterion surface versus the parameters(ρ, θ) for the
experiment 2 on a two-zero/two-pole case. (Star = True location of system
zeros. Square = Estimated minimum of the criterion function.)
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Fig. 8. Bussgang criterion surface versus the parameters(ρ, θ) for a system
with four zeros combined from experiment 1 and 2 of subsection II-E. (Stars =
True locations of system zeros. Square = Estimated minimum of the criterion
function.)

extension of the adaptation theory to the cascade of simple second-
order sections will require the development of a sort of gradient-
back-propagation algorithm for on-line adaptation of all second-order
sections simultaneously.

A. On parallel versus sequential two-pole filters adaptation

Before developing a Bussgang-criterion gradient back-propagation
algorithm for the multi-pole state-space adaptive filter, it is necessary
to provide a rationale for simultaneous adaptation of the cascade.

A simpler choice would be to sequentially adapt individual second-
order sections; that is, beginning to adapt a section when the preced-
ing section in the cascade has completed adaptation. This procedure
is unfeasible, though, because the combined presence of system
zeros and second-order-filters poles warps the adaptation criterion
surface as seen by next filters in the cascade. Such phenomenon
is exemplified in the Figure 8, which shows the shape of the
Bussgang surface – as a function of a section parametersρ and θ
– in presence of a system having the four zeros combined from
the two experiments of subsection II-E. In the right-hand panel of
Figure 8, the crosses indicate the locations of the system zeros,
while the square denote the minimum of the criterionF (ρ, θ). As
it is readily seen, the presence of two zeros warps the criterion
surface so that its minimum falls amidst the system zeros. This
simple experiment leads to the conclusion that sequential simple-
filter adaptation is not feasible in this context. In the case of parallel
adaptation, the adaptation criterion function accounts for the joint
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behavior of the single filters simultaneously and is therefore adequate
to the simultaneous adaptation of their parameters.

B. Stable multi-pole adaptive filter structure and adaptation

The number of second-order sections forming the cascade is
denoted byL and the filter coefficients for thèth section are now
denoted as(r(`), θ(`)). The state-space equations for the`th section
read:[

ξ
(`)
1 (n + 1)

ξ
(`)
2 (n + 1)

]
= ρ(r(`)(n))

[
cos θ(`)(n) − sin θ(`)(n)

sin θ(`)(n) cos θ(`)(n)

]

×
[

ξ
(`)
1 (n)

ξ
(`)
2 (n)

]
+

[
1
0

]
x(`)(n) ,

u(`)(n) =
[

2ρ(r(`)(n)) cos θ(`)(n) ρ(r(`)(n)) cos 2θ(`)(n)

sin θ(`)(n)

]

×
[

ξ
(`)
1 (n)

ξ
(`)
2 (n)

]
+ x(`)(n) .

(22)
The necessary cascade-connection equations read:

x(1)(n) = x(n) , x(`)(n) = u(`−1)(n) , 2 ≤ ` ≤ L . (23)

The overall multi-pole filter output signal is clearlyu(L)(n).
The Bussgang criterion is defined on the basis of the overall

filter output signal, which should approximate the source signal after
adaptation and is now written asF = E[F̄ (u(L))].

Each second-order filter parameter-pair is adapted according to the
same gradient-based equation (8), where variables(ρ(n), θ(n)) are
replaced by(ρ(`)(n), θ(`)(n)).

For the required derivatives of the criterion function with respect to
the parametersr(`) andθ(`), the results are the same of (9), (10) and
(11), where variables(ρ(n), θ(n), ξ1(n), ξ2(n)) should be replaced
by (ρ(`)(n), θ(`)(n), ξ

(`)
1 (n), ξ

(`)
2 (n)).

In order to complete the calculation, it is necessary to compute
the derivative ∂F̄

∂u(`) . We distinguish between two cases. In the case
` = L, the computation is straightforward, as the quantityF̄ is a
function of the variableu(L) only. In the other cases, namely for
1 ≤ ` < L, we may use the following chain rules:

∂F̄

∂u(`) = ∂F̄

∂u(L)
∂u(L)

∂u(`) ,
∂u(L)

∂u(`) = ∂u(L)

∂u(L−1)
∂u(L−1)

∂u(L−2) . . . ∂u(`+2)

∂u(`+1)
∂u(`+1)

∂u(`) .
(24)

¿From the state-space equations (22) and the cascade-connection (23),
it is straightforward to conclude that all the derivatives in the right-
hand side of the last equation in (24) equal1. Therefore, we conclude

∂F̄

∂u(`)(n)
= ∂F̄

∂u(L)(n)
.

C. Experiments with multi-pole IIR filters

In the following experiments, the filters coefficients were initialized
as r(`) = atan(0.9) and θ(`) = π`

L+1
in order to cover the whole

upper half-disk.
The first set of experiments aimed at verifying the ability of the

multipole filter to deconvolve a system with four and six zeros
located very close to the unit circle. For the four-zero system, the
order of the filter was chosen equal to four (L = 2) as well as
six (L = 3), in order to test for the robustness of the adaptation
algorithm to model order mismatch. The results obtained in the
four-zero/four-pole and the four-zero/six-pole case are depicted in
Figures 9 and 10, respectively: In both situations, four adaptive filter
poles match the system zeros; in the second case, the redundant pair
of poles approaches the origin and give no contribution. The results
obtained in the siz-zero/six-pole case are depicted in Figure 11. All
the presented results seem satisfactory as the value reached by the
ISI index is below−20 dB.
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Fig. 9. Results of the experiment on a four-zero/four-pole case.
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Fig. 10. Results of the experiment 2 on a four-zero/six-pole case.

An analysis of the behavior of an adaptive filter in presence of
Gaussian noisev(n) added to system output, according to model
(3), was also performed. The noise level is expressed via the signal-
to-noise ratio (SNR) defined as:

SNR
def
=

E[s2(n)]

E[v2(n)]
. (25)

The average results (in terms of mean/variance of the ISI values
recorded over100 independent trials) are reported in the Table I.
As long as the SNR level remains greater than20 dB the result
is completely satisfactory. With a SNR of less than10 dB the
performance seem to degrade progressively. The very low values of
variances suggest the good stability of the adaptation process.

IV. CONCLUSION

The aim of the present paper was to present an investigation
on a possible adaptive inherently-stable IIR filtering theory for
on-line blind signal deconvolution. The solution of choice was a
cascade of two-pole filters, realized in state-space form with a special
parameterization of the time-varying filter coefficients, in order to
ensure stability. Single experiments as well as collective experiments
on noiseless/noisy FIR forward systems, exhibiting zeros very close to
the unit circle, illustrated the good behavior of the developed theory.
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Fig. 11. Results of the experiment 2 on a six-zero/six-pole case.
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TABLE I
AVERAGE RESIDUAL INTER-SYMBOL INTERFERENCEISI, AS DEFINED IN

(15), AND VARIANCE OVER 100 INDEPENDENT TRIALS VERSUS THE

SIGNAL-TO-NOISE RATIO SNR,AS DEFINED IN (25), FOR A NOISY

SIX-ZERO SYSTEM.

SNR (dB) ISI AVE . (dB) ISI VAR . (dB)

0 −1.488 0.175
10 −8.956 0.205
20 −19.943 0.334
30 −25.579 0.275
40 −25.694 0.033
50 −25.649 0.003

Extensions of the proposed method to mixed FIR/IIR filters with
batch-type blind adaptation theories are currently under investiga-
tion, with the aim of growing the deconvolution capabilities of
the proposed filter. Also, the extension of the SISO filter theory
proposed in the present manuscript into a MIMO filter theory is under
consideration.
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APPENDIX I
APPENDIX A: CLOSED FORM EXPRESSION OF THEISI INDEX FOR

THE TWO-ZERO/TWO-POLE CASE

In order to derive the closed form expression of the ISI index
for the two-zero/two-pole in the subsection II-E, let us first recall
the relationship between the filter poleφ and the overall causal
impulse responseTk(n) at discrete-timen, which is Tk(n) =
Z−1{H(z)W (z; n)}(k), where Z{·}(·) denotes the Z-transform
operator. From this relationship it is possible to compute the ISI figure
in closed form. In fact, by reversing it through the Fourier transform
operatorF{·}(·), we haveF{Tk}(ω; n) = H(eiω)W (eiω; n). Then,
the Parseval theorem allows writing:

+∞∑
k=0

T 2
k (n) =

1

2π

∫ +π

−π

|H(eiω)W (eiω; n)|2dω . (26)

This integral may be computed by the help of the residue theorem
applied to the following equivalent line-integral over the unit-circle
∂D in the complex plane:

1

2πi

∮

∂D
H(z)H(z−1)W (z; n)W (z−1; n)

dz

z
. (27)

The computation of the residues can be carried out by noting that
the integrand, let us name itI(z; n), has three single poles inside the
unit-diskD, namely inz = φ, z = φ∗ andz = 0. Residues are:

R1
def
= Res[I(z), 0] =

|φg|2
|φ|2 ,

R2
def
= Res[I(z), φ] =

(1−φgφ−1)(1−φ∗gφ−1)(1−φgφ)(1−φ∗gφ)

(1−φ∗φ−1)(1−|φ|2)(1−φ2)
,

R3
def
= Res[I(z), φ∗] = R∗2 .

(28)
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Also, the initial-value theorem for the Z-transform may be used to
computemaxk T 2

k (n) = T 2
0 (n). Its application gives:

T0(n) = lim
|z|→+∞

H(z)W (z; n) = 1 . (29)

It is worth noting that, in the two-zero two-pole case of concern
here, the total impulse response has the maximum value at lag zero,
therefore at perfect filter convergence the total delay of the system-
filter cascade is null.

APPENDIX II
APPENDIX B: APPROXIMATION OFpu(u; n) AS A FUNCTION OF

THE ISI FIGURE

The forward system to deconvolve is FIR, but the inverse adaptive
filter is IIR, thus their cascade is IIR and the impulse response of
the cascade system isTk. The filter output signal is an infinitely-long
linear combination of the samples of the source sequence, which are
IID random variables, with combining coefficientsTk:

u(n) =

∞∑
k=0

Tk(n)s(n− k) . (30)

Let us recall the definition of the first-kind characteristic func-
tion of a random variablex, that is Φx(ω)

def
= F{px(x)}(ω) =

Ex[e−iωx], whereω ∈ R. A useful property of the characteristic
function is thatΦc·x(ω) = Φx(cω) for everyc ∈ R.

According to the known combination rules of probability density
functions for linear combination of random variables and to the dual-
ity theorem of Fourier transform, the filter output signal distribution
pu(u; n) may be written as:

pu(u; n) =
1

|∏∞
k=0

Tk(n)|ps

(
u

T0(n)

)
? ps

(
u

T1(n)

)
?

ps

(
u

T2(n)

)
? ps

(
u

T3(n)

)
? · · ·

= F−1{Φs(ω)

∞∏
k=1

Φs(Tk(n)ω)}(u) , (31)

where symbol ‘?’ denotes convolution. In order to develop the above
calculations, we hypothesized that, at any timen, the global system-
filter cascade impulse response is such thatTk(n) 6= 0 for all k. As
it is readily recognized, if someTk = 0, the relative terms in the
above equation disappear. It is worth noting that the statistics of the
random signalu(n) are time-varying and therefore the probability
density function depends on time.

It is possible to find a suitably approximated expression for the
probability densitypu(u; n) for a uniformly-distributed source signal
with varianceσ2

s = 1. In this case, the characteristic function of
the source signal has expressionΦs(ω) = sin(

√
3ω)√

3ω
. A reasonable

approximation of the above characteristic function is the Gaussian

kernel exp
(
−ω2

2

)
, therefore the infinite product in the expression

(31) may be approximated by:

∞∏
k=1

Φs(Tkω)}(u) ≈ exp

(
−ω2

2

∞∑
k=1

T 2
k

)
= exp

(
−ω2

2
ISI

)
.

(32)
The inverse transform of a Gaussian kernel is again a Gaussian kernel,
therefore:

pu(u; n) ≈ ps(u) ?

[
1√

2π ISI(n)
exp

(
− u2

2 ISI(n)

)]
. (33)

The above convolution may be computed easily and leads to (18).

APPENDIX III
APPENDIX C: RELATIONSHIP BETWEENISI AND MSE INDICES

In the noiseless case, i.e., whenv(n) = 0 in the system output
model (3), the differenceu(n)− s(n) in the definition of MSE (21)
may be written as:

u(n)− s(n) =

∞∑
k=1

Tk(n)s(n− k) , (34)

whereTk(n) denotes again the global system-filter cascade impulse
response. On the basis of this relationship, the MSE index recasts as:

MSE(n) =

∞∑
k=1

∞∑
h=1

Tk(n)Th(n)E[s(n− k)s(n− h)] . (35)

As the source sequence is, by hypothesis, IID and zero-mean, its
autocorrelationE[s(n − k)s(n − h)] is zero fork 6= h and equals

σ2
s

def
= E[s2] for k = h.

In the noisy case, similar calculations show that the discussed
relationship becomes:

MSE(n) = σ2
sISI(n) + σ2

ṽ(n) , (36)

where σ2
ṽ(n) denotes the filtered additive system noise sequence

ṽ(n)
def
=

∑∞
k=0

Tk(n)v(n− k).
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